Grade 8 Mathematics Instructional Toolkit

The Grade 8 Mathematics Instructional Toolkit is intended to assist teachers with planning instruction aligned to the Florida Standards. This toolkit is not intended to replace your district's curriculum, but rather it serves to support the teaching and learning of the grade 8 Mathematics Florida Standards. This toolkit includes a breakdown of information related to the Grade 8 Mathematics Florida Standards Assessment (FSA), CPALMS and Florida Students, the Grade 8 Mathematics Florida Standards aligned resources.

Grade 8 Mathematics Florida Standards Assessment

This section highlights some key information related to the Grade 8 Mathematics FSA that can be found on the <u>FSA Portal</u>. These items include the Test Design Summary and Blueprint, Test Item Specifications and FSA Practice Tests.

Test Design Summary and Blueprint

The grade 8 mathematics standards can be broken down into four major reporting categories as assessed on the Grade 8 Mathematics FSA with a corresponding weight. This information can also be found on page 6 of the <u>Test</u> <u>Design Summary and Blueprint</u>.

- Expressions and Equations (30%)
- Functions (25%)
- <u>Geometry (27%)</u>
- Statistics and Probability & The Number System (18%)

Test Item Specifications

The grade 8 <u>Test Item Specification Document</u> indicates the alignment of items with the Florida Standards. Assessment limits are included in the specifications, which define the range of content knowledge in the assessment items for the standard. In addition to limits, each item specification identifies whether or not that item could appear in the calculator allowed test session or no calculator allowed test session. Sample items for each standard are also included in the specifications document. Each standard in this toolkit lists the corresponding page number in the specifications document along with any assessment limits and allowable calculator use.

Practice Tests

<u>Practice Tests</u> are available for students to become familiar with the various item types that may be used on the Grade 8 Mathematics FSA. Within the Test Item Specification document, page 43, is a chart aligning standards to each item type and item number on the Computer-Based Practice Test. Each Computer-Based Practice Test is provided with an <u>answer key</u>. It is important to note that students are not permitted to use a calculator of any kind on Session 1 of the Grade 8 Mathematics FSA. Students will be permitted a scientific calculator on all other sessions. For information regarding usage of calculators, please see the <u>Calculator and Reference Sheet Policy</u> page on the FSA portal.

CPALMS: Official Source of Florida Standards

This section features information and tools that are found on <u>CPALMS</u>.

Grade 8 Mathematics Course Description

The <u>Grade 8 Mathematics Course Description</u> provides an overview for the course with standards aligned resources for educators, students, and parents.

Mathematics Formative Assessment System (MFAS)

One resource available on CPALMS that has been designed specifically for mathematics instruction is the <u>Mathematics Formative Assessment System (MFAS</u>). The system includes a task or problem that teachers can implement with their students. It also includes various levels of rubrics that help the teacher interpret students' responses. In addition to using the MFAS tasks as formative assessments for students, these tasks can be used by teachers to plan lessons that are closely aligned to the standards.

Model Eliciting Activity (MEAs)

<u>Model Eliciting Activities (MEAs)</u> are open-ended, interdisciplinary problem-solving activities that are meant to reveal students' thinking about the concepts embedded in these realistic activities. Students will work in teams to apply their knowledge of mathematics and science while considering constraints and tradeoffs. Each MEA is aligned to at least two subject areas, including mathematics, English language arts and/or literacy in the content areas, and science.

Mathematical Practices

The Mathematical Practices are habits of mind that describe varieties of expertise that mathematics educators at all levels should seek to develop in their students. The Mathematical Practices should be infused during the course and will be assessed throughout the Grade 8 Mathematics FSA. More information about each Mathematical Practice can be found by clicking on the links below.

MAFS.K12.MP.1.1 Make sense of problems and persevere in solving them.

MAFS.K12.MP.2.1 Reason abstractly and quantitatively.

MAFS.K12.MP.3.1 Construct viable arguments and critique the reasoning of others.

MAFS.K12.MP.4.1 Model with mathematics.

MAFS.K12.MP.5.1 Use appropriate tools strategically.

MAFS.K12.MP.6.1 Attend to precision.

MAFS.K12.MP.7.1 Look for and make use of structure.

MAFS.K12.MP.8.1 Look for and express regularity in repeated reasoning.

Depth of Knowledge

Florida has adopted Webb's four-level Depth of Knowledge (DOK) model of content complexity as a means of classifying the cognitive demand presented by the Florida standards. It is important to distinguish between the DOK rating for a given standard and the possible DOK ratings for assessment items designed to address the standard. This is particularly important for assessment purposes, since 50% or more of assessment items associated with a given standard should meet or exceed the DOK level of the standard. The DOK Levels are identified for each standard throughout this document. Please visit the <u>CPALMS Content Complexity</u> page for more information about the DOK complexity for standards. For more information about the DOK complexity for standards. For more information about the DOK complexity for <u>Portal</u>.

Florida Students

Resources specifically designed with students in mind are available on <u>Florida Students</u>. Florida Students is an interactive site that provides educational resources and student tutorials aligned to the Florida Standards. This site should not be used as a lesson guide, but rather a tool to help students obtain mastery in various mathematical concepts.

Grade 8 Mathematics Florida Standards

This section includes a breakdown of each standard by domain and cluster. Standards should not be taught in the order below. To do so would strip the coherence of the mathematical ideas and miss opportunity to enhance the major work of the grade with the supporting clusters and/or standards. In addition to the breakdown, each standard has the corresponding DOK Level, and assessment limits with page number in the <u>Grade 8 Mathematics</u> <u>Item Specification</u>.

Domain: The Number System

Cluster 1 (Supporting): <u>Know that there are numbers that are not rational, and approximate them by rational</u> <u>numbers.</u>

Standard Code	Standard	Assessment Limit(s)	Resources
MAFS.8.NS.1.1	Know that numbers that are not rational are	Page 10; All irrational	MFAS:
	called irrational. Understand informally that	numbers may be used,	<u>Rational</u>
	every number has a decimal expansion; for	excluding e. Only rational	Numbers
	rational numbers show that the decimal	numbers with repeating	
	expansion repeats eventually, and convert a	decimal expansions up to	Lesson:
	decimal expansion which repeats eventually	thousandths may be used.	Predicting the
	into a rational number.		<u>decimal</u>
		Item assessed without	equivalent for
	Content Complexity: Level 1: Recall	calculator.	<u>a fraction</u>
MAFS.8.NS.1.2	Use rational approximations of irrational	Page 11; All irrational	MFAS:
	numbers to compare the size of irrational	numbers may be used,	Locating
	numbers, locate them approximately on a	excluding e. Irrational	<u>Irrational</u>
	number line diagram, and estimate the value	expressions should only use	<u>Numbers</u>
	of expressions (e.g., π^2). For example, by	one operation.	
	truncating the decimal expansion of $\sqrt{2}$, show		Lesson: Pin
	that v2 is between 1 and 2, then between 1.4	Item assessed without	the Irrational
	and 1.5, and explain how to continue on to get	calculator.	<u>"Tail" on the</u>
	better approximations.		Number Line
	Content Complexity: Level 2: Basic Application		
	of Skills & Concepts		

Domain: Expressions and Equations

Cluster 1 (Major): Work with radicals and integer exponents.

Standard Code	Standard	Assessment Limit(s)	Resources
MAFS.8.EE.1.1	Know and apply the properties of integer	Page 12; Exponents must be	MFAS:
	exponents to generate equivalent numerical	integers. Bases must be	<u>Equivalent</u>

	expressions. For example, $3^2 \times 3^{-5} = 3^{-3} =$	whole numbers. Variables	Powers
	$\frac{1}{1} = \frac{1}{1}$	may not be used.	Expressions
	3 ³ 27		
	Content Complexity Level 1. Decell	Item assessed without	Lesson: Math
	<u>Content Complexity</u> : Level 1: Recall	calculator.	is
			Exponentially
			Fun!
MAFS.8.EE.1.2	Use square root and cube root symbols to	Page 13: Square roots and	MFAS:
	represent solutions to equations of the form	cube roots may be used to	Dimensions
	$x^2 = n$ and $x^3 = n$ where n is a positive rational	represent solutions to	Needed
	number. Evaluate square roots of small	equations Radicands may	Heeded
	nerfect squares and cube roots of small	not include variables	Lesson:
	perfect squares and cabe roots of small	not menuae variables.	<u>Generalizing</u>
	perfect cubes. Know that $\sqrt{2}$ is infational.	Item assessed with and/or	Datterns: The
	Content Complexity: Level 1: Recall	without calculator	Difference of
	<u>content complexity</u> . Level 1. Needin		Difference of
			<u>Two Squares</u>
<u>IVIAFS.8.EE.1.3</u>	Use numbers expressed in the form of a single	Page 14; N/A	MIFAS: HOW
	digit times an integer power of 10 to estimate		Iviany Times?
	very large or very small quantities, and to	Item assessed without	
	express how many times as much one is than	calculator.	Lesson:
	the other. For example, estimate the		Estimating
	population of the United States as $3 \times 10^{\circ}$ and		Length Using
	the population of the world as 7×10^9 , and		<u>Scientific</u>
	determine that the world population is more		<u>Notation</u>
	than 20 times larger.		
	Content Complexity: Level 1: Recall		
MAFS.8.EE.1.4	Perform operations with numbers expressed	Page 15; N/A	MFAS: Mixed
	in scientific notation, including problems		Form
	where both decimal and scientific notation are	Item assessed without	Operations
	used. Use scientific notation and choose units	calculator.	
	of appropriate size for measurements of very		Tutorial:
	large or very small quantities (e.g., use		Calculating
	millimeters per year for seafloor spreading).		Red Blood
	Interpret scientific notation that has been		Cells
	generated by technology.		
	Content Complexity: Level 2: Basic Application		
	of Skills & Concepts		

Cluster 2 (*Major*): <u>Understand the connections between proportional relationships, lines, and linear equations.</u>

Standard Code	Standard	Assessment Limit(s)	Resources
MAFS.8.EE.2.5	Graph proportional relationships, interpreting	Page 16; Numbers in items	MFAS:
	the unit rate as the slope of the graph.	must be rational numbers.	Proportional
	Compare two different proportional		<u>Paint</u>
	relationships represented in different ways.	Item assessed with	
	For example, compare a distance-time graph	calculator.	Lesson: Slope
	to a distance-time equation to determine		Intercept

	which of two moving objects has greater speed.		
	Content Complexity: Level 2: Basic Application		
	of Skills & Concepts		
MAFS.8.EE.2.6	Use similar triangles to explain why the slope	Page 17; All triangles must	MFAS: Slope
	<i>m</i> is the same between any two distinct points	be right triangles and on a	Triangles
	on a non-vertical line in the coordinate plane;	coordinate grid. Numbers in	
	derive the equation $y = mx$ for a line through	items must be rational	Lesson: Slope
	the origin and the equation $y = mx + b$ for a	numbers. Functions must be	Intercept
	line intercepting the vertical axis at b.	linear.	
	<u>Content Complexity</u> : Level 2: Basic Application of Skills & Concepts	Item assessed with calculator.	

Cluster 3 (*Major*): <u>Analyze and solve linear equations and pairs of simultaneous linear equations.</u>

Standard Code	Standard	Assessment Limit(s)	Resources
MAFS.8.EE.3.7	Solve linear equations in one variable.	Pages 18-19; Numbers in	MFAS:
	a) Give examples of linear equations in one	items must be rational	Equation
	variable with one solution, infinitely many	numbers.	Prototypes
	solutions, or no solutions. Show which of		
	these possibilities is the case by	Item assessed with	Lesson:
	successively transforming the given	calculator.	<u>Company</u>
	equation into simpler forms, until an		<u>Charges</u>
	equivalent equation of the form x = a, a =		
	a, or a = b results (where a and b are		
	different numbers).		
	b) Solve linear equations with rational		
	number coefficients, including equations		
	whose solutions require expanding		
	expressions using the distributive property		
	and collecting like terms.		
	Content Complexity: Level 2: Basic Application		
	of Skills & Concents		
MAFS 8 FF 3 8	Analyze and solve pairs of simultaneous linear	Pages 20-22: Numbers in	MEAS
	equations.	items must be rational	Identify the
	a) Understand that solutions to a system of	numbers. Coefficients of	Solution
	two linear equations in two variables	equations in standard form	
	correspond to points of intersection of	must be integers. Items	Lesson: Battle
	their graphs, because points of	written for MAFS.8.EE.3.8a	on the High
	intersection satisfy both equations	must include the graph or	<u>Seas</u>
	simultaneously.	the equations. Equations in	
	b) Solve systems of two linear equations in	items written for	
	two variables algebraically, and estimate	MAFS.8.EE.3.8a must be	
	solutions by graphing the equations. Solve	given in slope-intercept	
	simple cases by inspection. For example,	form.	
	3x + 2y = 5 and 3x + 2y = 6 have no		
	solution because 3x + 2y cannot		

()	simultaneously be 5 and 6. Solve real-world and mathematical problems leading to two linear equations in two variables. For example, given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair.	Item assessed with calculator.	
Cc of	ontent Complexity: Level 2: Basic Application Skills & Concepts		

Domain: Functions

Cluster 1 (Major): Define, evaluate, and compare functions.

Standard Code	Standard	Assessment Limit(s)	Resources
MAFS.8.F.1.1	Understand that a function is a rule that	Pages 23-24; Function	MFAS: What is
	assigns to each input exactly one output. The	notation must not be used.	a Function?
	graph of a function is the set of ordered pairs	Nonlinear functions may be	
	consisting of an input and the corresponding	included for identifying a	Lesson: How
	output.	function	Much Are
			<u>Playoff</u>
	<u>Content Complexity</u> : Level 2: Basic Application	Item assessed with and/or	Tickets?
	of Skills & Concepts	without calculator.	
MAFS.8.F.1.2	Compare properties of two functions each	Page 25; Function notation	MFAS: Speed
	represented in a different way (algebraically,	may not be used. Functions	<u>Reading</u>
	graphically, numerically in tables, or by verbal	must be linear.	
	descriptions). For example, given a linear		<u>Original</u>
	function represented by a table of values and a	Item assessed with	<u>Tutorial</u> : <u>The</u>
	linear function represented by an algebraic	calculator.	<u>Linear</u>
	expression, determine which function has the		<u>Function</u>
	greater rate of change.		<u>Connection</u>
	Content Complexity: Level 2: Basic Application		
	of Skills & Concepts		
<u>MAFS.8.F.1.3</u>	Interpret the equation y = mx + b as defining a	Page 26; Function notation	MFAS: Linear
	linear function, whose graph is a straight line;	may not be used.	or Nonlinear?
	give examples of functions that are not linear.		
	For example, the function $A = s^2$ giving the	Item assessed with	Lesson:
	area of a square as a function of its side length	calculator.	Functions: Are
	is not linear because its graph contains the		They Linear or
	points (1,1), (2,4) and (3,9), which are not on a		Nonlinear?
	straight line.		
	Content Complexity Level 2. Decis Application		
	content complexity: Level 2: Basic Application		
	of Skills & Concepts		

Cluster 2 (Major):	: Use functions to	o model	relationships	between	quantities.
--------------------	--------------------	---------	---------------	---------	-------------

Standard Code	Standard	Assessment Limit(s)	Resources
MAFS.8.F.2.4	Construct a function to model a linear	Page 27; Function notation	MFAS: Smart
	relationship between two quantities.	may not be used. Functions	TV
	Determine the rate of change and initial value	must be linear.	
	of the function from a description of a		<u>Original</u>
	relationship or from two (x, y) values,	Item assessed with and/or	<u>Tutorial</u> :
	including reading these from a table or from a	without calculator.	Constructing
	graph. Interpret the rate of change and initial		Functions
	value of a linear function in terms of the		from Tables
	situation it models, and in terms of its graph		
	or a table of values.		
	Content Complexity: Level 3: Strategic		
	Thinking & Complex Reasoning		
MAFS.8.F.2.5	Describe qualitatively the functional	Pages 28-30; Linear or	MFAS: Graph
	relationship between two quantities by	nonlinear relationships may	<u>the Ride</u>
	analyzing a graph (e.g., where the function is	use any of the four	
	increasing or decreasing, linear or nonlinear).	quadrants. Graph	<u>Original</u>
	Sketch a graph that exhibits the qualitative	descriptions move from left	<u>Tutorial</u> :
	features of a function that has been described	to right. Functional	Interpreting
	verbally.	relationships must be	Distance-Time
		continuous.	<u>Graphs</u>
	Content Complexity: Level 2: Basic Application		
	of Skills & Concepts	Item assessed with and/or	
		without calculator.	

Domain: Geometry

Cluster 1 (Major): Understand congruence and similarity using physical models, transparencies, or geometry software.

Standard Code	Standard	Assessment Limit(s)	Resources
MAFS.8.G.1.1	Verify experimentally the properties of	Pages 31-32; The coordinate	MFAS: Angle
	rotations, reflections, and translations:	plane should not be used	Transformatio
	a) Lines are taken to lines, and line segments	until MAFS.8.G.1.3. Limit	<u>ns</u>
	to line segments of the same length.	sequences to no more than	
	b) Angles are taken to angles of the same	two transformations. A pre-	<u>Lesson</u> : <u>A</u>
	measure.	image and image should not	Transformatio
	c) Parallel lines are taken to parallel lines.	include apostrophe notation	n's Adventure
		as this would give away the	with Patty
	Content Complexity: Level 2: Basic Application	identification of similarity	Paper
	of Skills & Concepts	and congruence. No	
		reference to the definition	
		of congruence or symbols	
		relating to the definition	
		should be used (HS	
		Geometry).	

		Item assessed with and/or	
		without calculator.	
MAFS.8.G.1.2	Understand that a two-dimensional figure is	Pages 31; Limit sequences to	MFAS:
	congruent to another if the second can be	no more than two	<u>Multistep</u>
	obtained from the first by a sequence of	transformations. A pre-	Congruence
	rotations, reflections, and translations; given	image and image should not	
	two congruent figures, describe a sequence	include apostrophe notation	Lesson:
	that exhibits the congruence between them.	as this would give away the	Polygon
		identification of similarity	Transformers
	Content Complexity: Level 2: Basic Application	and congruence. No	
	of Skills & Concepts	reference to the definition	
		of congruence or symbols	
		relating to the definition	
		should be used (HS	
		Geometry).	
		Item assessed with and/or	
		without calculator.	
<u>MAFS.8.G.1.3</u>	Describe the effect of dilations, translations,	Page 32; Coordinate values	<u>MFAS</u> :
	figures using ecordinates	The number of	Rotation
		transformations should be	Coordinates
	Contant Complexity: Lovel 2: Pasic Application	no more than two. In items	Virtual
	of Skills & Concents	that require the student to	<u>Manipulative</u> :
		draw a transformed figure	Transformatio
		using a dilation or a	ns
		rotation, the center of the	110
		transformation must be	
		given.	
		0	
		Item assessed with and/or	
		without calculator.	
MAFS.8.G.1.4	Understand that a two-dimensional figure is	Page 33; Items should not	MFAS: Proving
	similar to another if the second can be	include the coordinate plane	<u>Similarity</u>
	obtained from the first by a sequence of	as the coordinate plane is	
	rotations, reflections, translations, and	needed in MAFS.8.G.1.3.	Original
	dilations; given two similar two-dimensional	Limit the sequence to no	<u>Tutorial</u> :
	figures, describe a sequence that exhibits the	more than two	Home
	similarity between them.	transformations. Two-	Transformatio
		dimensional figures are	ns
	<u>content complexity</u> : Level 2: Basic Application	infitted to no more than	
	of Skills & Concepts	seven sides. A pre-image	
		include apostropho potation	
		as this would give away the	
		identification of similarity	
		and congruence	
		No reference to the	
		definition of congruence or	

		symbols relating to the definition should be used (HS Geometry).	
		without calculator.	
<u>MAFS.8.G.1.5</u>	Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so. Content Complexity: Level 2: Basic Application of Skills & Concepts	Page 34; Items must not include shapes beyond triangles. Item assessed with and/or without calculator.	MFAS: Justifying the Triangle Sum Theorem Lesson: Identifying Similar Triangles

Cluster 2 (Major): MAFS.8.G.2 Understand and apply the Pythagorean Theorem.

Standard Code	Standard	Assessment Limit(s)	Resources
MAFS.8.G.2.6	Explain a proof of the Pythagorean Theorem	Page 35; For the converse,	MFAS:
	and its converse.	only perfect roots should be	Pythagorean
		used.	<u>Squares</u>
	Content Complexity: Level 2: Basic Application		
	of Skills & Concepts	Item assessed with	Lesson:
		calculator.	Discovering
			and Using the
			Pythagorean
			<u>Theorem</u>
MAFS.8.G.2.7	Apply the Pythagorean Theorem to determine	Page 36; If the triangle is	MFAS: How
	unknown side lengths in right triangles in real-	part of a three-dimensional	Far to School
	word and mathematical problems in two and	figure, a graphic of the	
	three dimensions.	three-dimensional figure	Lesson: Alas,
		must be included. Points on	Poor
	Content Complexity: Level 2: Basic Application	the coordinate grid must be	<u>Pythagoras, I</u>
	of Skills & Concepts	where grid lines intersect.	Knew You
			Well!
		Item assessed with	
		calculator.	
MAFS.8.G.2.8	Apply the Pythagorean Theorem to find the	Page 36; If the triangle is	MFAS:
	distance between two points in a coordinate	part of a three-dimensional	<u>Distance</u>
	system.	figure, a graphic of the	Between Two
		three-dimensional figure	Points
	Content Complexity: Level 1: Recall	must be included. Points on	
		the coordinate grid must be	STEM Lesson:
		where grid lines intersect.	Bike Club Trip

	Item assessed with	
	calculator.	

Cluster 3 (Additional): <u>Solve real-world and mathematical problems involving volume of cylinders, cones, and</u> <u>spheres.</u>

Standard Code	Standard	Assessment Limit(s)	Resources
MAFS.8.G.3.9	Know the formulas for the volume of cones,	Page 37; Graphics of three-	MFAS:
	cylinders, and spheres and use them to solve	dimensional figures can be	<u>Platinum</u>
	real-world and mathematical problems.	included. Dimensions must	Cylinder
		be given as rational	
	Content Complexity: Level 2: Basic Application	numbers. Figures must not	<u>Original</u>
	of Skills & Concepts	be composite.	<u>Tutorial</u> :
			Volume of
		Item assessed with	Spherical
		calculator.	Bubble Tea

Domain: Statistics & Probability

Cluster 1 (Supporting): *Investigate patterns of association in bivariate data.*

Standard Code	Standard	Assessment Limit(s)	Resources
MAFS.8.SP.1.1	Construct and interpret scatter plots for	Page 38; Numbers in items	<u>Original</u>
	bivariate measurement data to investigate	must be rational numbers.	<u>Tutorial</u> :
	patterns of association between two		Scatterplots
	quantities. Describe patterns such as	Item assessed with and/or	Part 1:
	clustering, outliers, positive or negative	without calculator.	Graphing
	association, linear association, and nonlinear		
	association.		MFAS: <u>Sleepy</u>
			Statistics
	<u>Content Complexity</u> : Level 2: Basic Application		
	of Skills & Concepts		
MAFS.8.SP.1.2	Know that straight lines are widely used to	Page 39; Numbers in items	Lesson: If the
	model relationships between two quantitative	must be rational numbers.	<u>line fits,</u>
	variables. For scatter plots that suggest a	Trend/association is based	where's it?
	linear association, informally fit a straight line,	on visual inspection. Line of	
	and informally assess the model fit by judging	best fit must be informally	<u>MFAS</u> : <u>Line of</u>
	the closeness of the data points to the line.	assessed. Trend/association	Good Fit
		must be linear	
	<u>Content Complexity</u> : Level 2: Basic Application		
	of Skills & Concepts	Item assessed with and/or	
		without calculator.	
MAFS.8.SP.1.3	Use the equation of a linear model to solve	Page 40; Numbers in items	Lesson:
	problems in the context of bivariate	must be simple rational	<u>Scattering</u>
	measurement data, interpreting the slope and	numbers (e.g., 1/2,	<u>Plots</u>
	intercept. For example, in a linear model for a	1/4, to the 10th). Data are	
	biology experiment, interpret a slope of 1.5	required for all items. In all	<u>MFAS</u> : <u>Foot</u>
	cm/hr as meaning that an additional hour of	items requiring a line of best	Length

	sunlight each day is associated with an additional 1.5 cm in mature plant height.	fit, the equation of that line should be given.	
	<u>Content Complexity</u> : Level 2: Basic Application of Skills & Concepts	Item assessed with and/or without calculator.	
<u>MAFS.8.SP.1.4</u>	Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. For example, collect data from students in your class on whether or not they have a curfew on school nights and whether or not they have assigned chores at home. Is there evidence that those who have a curfew also tend to have chores?	Page 41; Numbers in items must be rational numbers. Data given should include the grand total of the survey. Tables must not include more than two columns (plus category and total) and two rows (plus category and total). Item assessed with calculator.	Lesson: Tackling 2 Way Tables MFAS: <u>Music</u> and Sports
	Thinking a complex reasoning		

Grade 8 Mathematics Resources

Course Descriptions, Standards, and Resources

- Grade 8 Mathematics Course Description
- Grade 8 Math Student Resources
- <u>Text Complexity Resources</u>
- Florida Assessments for Instruction in Mathematics (FAIM)
- <u>Student Support Resources</u>
- Parent Support Resources

Florida Standards Assessment Assistance

- <u>Test Item Specifications</u>
- Test Design Summary and Blueprint
- FSA Fact Sheet
- <u>Calculator and Reference Sheet Policy</u>
- <u>Reference Sheet</u>
- Understanding FSA Reports