Grade 6 Mathematics Instructional Toolkit

The Grade 6 Mathematics Instructional Toolkit is intended to assist teachers with planning instruction aligned to the Florida Standards. This toolkit is not intended to replace your district's curriculum, but rather it serves to support the teaching and learning of the grade 6 Mathematics Florida Standards. This toolkit includes a breakdown of information related to the Grade 6 Mathematics Florida Standards Assessment (FSA), CPALMS and Florida Students, the Grade 6 Mathematics Florida Standards aligned resources.

Grade 6 Mathematics Florida Standards Assessment

This section highlights some key information related to the Grade 6 Mathematics FSA that can be found on the <u>FSA Portal</u>. These items include the Test Design Summary and Blueprint, Test Item Specifications and FSA Practice Tests.

Test Design Summary and Blueprint

The grade 6 mathematics standards can be broken down into five major reporting categories as assessed on the Grade 6 Mathematics FSA with a corresponding weight. This information can also be found on page 4 of the <u>Test</u> <u>Design Summary and Blueprint</u>.

- Ratio and Proportional Relationships (15%)
- The Number System (21%)
- Expressions and Equations (30%)
- Geometry (15%)
- Statistics and Probability (19%)

Test Item Specifications

The grade 6 <u>Test Item Specification document</u> indicates the alignment of items with the Florida Standards. Assessment limits are included in the specifications, which define the range of content knowledge in the assessment items for the standard. Sample items for each standard are also included in the specifications document. Each standard in this toolkit lists the corresponding page number in the specifications document along with any assessment limits.

Practice Tests

<u>Practice Tests</u> are available for students to become familiar with the various item types that may be used on the Grade 6 Mathematics FSA. Within the Test Item Specification document, page 40, is a chart aligning standards to each item type and item number on the Paper-Based Practice Test. Each Paper-Based Practice Test is provided with an <u>answer key</u>. It is important to note that students are not permitted to use a calculator of any kind on the Grade 6 Mathematics FSA.

CPALMS: Official Source of Florida Standards

This section features information and tools that are found on <u>CPALMS</u>.

Grade 6 Mathematics Course Description

The <u>Grade 6 Mathematics Course Description</u> provides an overview for the course with standards aligned resources for educators, students, and parents.

Mathematics Formative Assessment System (MFAS)

One resource available on CPALMS that has been designed specifically for mathematics instruction is the <u>Mathematics Formative Assessment System (MFAS</u>). The system includes a task or problem that teachers can implement with their students. It also includes various levels of rubrics that help the teacher interpret students' responses. In addition to using the MFAS tasks as formative assessments for students, these tasks can be used by teachers to plan lessons that are closely aligned to the standards.

Model Eliciting Activity (MEAs)

<u>Model Eliciting Activities (MEAs)</u> are open-ended, interdisciplinary problem-solving activities that are meant to reveal students' thinking about the concepts embedded in these realistic activities. Students will work in teams to apply their knowledge of mathematics and science while considering constraints and tradeoffs. Each MEA is aligned to at least two subject areas, including mathematics, English language arts and/or literacy in the content areas, and science.

Mathematical Practices

The Mathematical Practices are habits of mind that describe varieties of expertise that mathematics educators at all levels should seek to develop in their students. The Mathematical Practices should be infused during the course and will be assessed throughout the Grade 6 Mathematics FSA. More information about each Mathematical Practice can be found by clicking on the links below.

MAFS.K12.MP.1.1 Make sense of problems and persevere in solving them.

MAFS.K12.MP.2.1 Reason abstractly and quantitatively.

MAFS.K12.MP.3.1 Construct viable arguments and critique the reasoning of others.

MAFS.K12.MP.4.1 Model with mathematics.

MAFS.K12.MP.5.1 Use appropriate tools strategically.

MAFS.K12.MP.6.1 Attend to precision.

MAFS.K12.MP.7.1 Look for and make use of structure.

MAFS.K12.MP.8.1 Look for and express regularity in repeated reasoning.

Depth of Knowledge

Florida has adopted Webb's four-level Depth of Knowledge (DOK) model of content complexity as a means of classifying the cognitive demand presented by the Florida standards. It is important to distinguish between the DOK rating for a given standard and the possible DOK ratings for assessment items designed to address the standard. This is particularly important for assessment purposes, since 50% or more of assessment items associated with a given standard should meet or exceed the DOK level of the standard. The DOK Levels are identified for each standard throughout this document. Please visit the <u>CPALMS Content Complexity</u> page for more information about the DOK complexity for standards. For more information about the DOK complexity for standards. For more information about the DOK complexity for <u>Portal</u>.

Florida Students

Resources specifically designed with students in mind are available on <u>Florida Students</u>. Florida Students is an interactive site that provides educational resources and student tutorials aligned to the Florida Standards. This site should not be used as a lesson guide, but rather a tool to help students obtain mastery in various mathematical concepts.

Grade 6 Mathematics Florida Standards

This section includes a breakdown of each standard by domain and cluster. Standards should not be taught in the order below. To do so would strip the coherence of the mathematical ideas and miss opportunity to enhance the major work of the grade with the supporting clusters and/or standards. In addition to the breakdown, each standard has the corresponding DOK Level, example resources, and assessment limits with page number in the <u>Grade 6 Mathematics Item Specification</u>.

Domain: Ratio and Proportion

Cluster 1 (Major): Understand ratio concepts and use ratio reasoning to solve problems.

Standard Code	Standard	Assessment Limit(s)	Resources
MAFS.6.RP.1.1	Understand the concept of a ratio and use	Page 9; Whole numbers	<u>MFAS</u> :
	ratio language to describe a ratio relationship	should be used for the	Interpreting
	between two quantities. For example, "The	quantities. Ratios can be	<u>Ratios</u>
	ratio of wings to beaks in the bird house at the	expressed as fractions, with	
	zoo was 2:1, because for every 2 wings there	":" or with words. Items may	Lesson: <u>"My</u>
	was 1 beak." "For every vote candidate A	involve mixed units within	<u>Favorite</u>
	received, candidate C received nearly three	each system (e.g. convert	<u>Recipe"</u>
	votes."	hours/min to seconds).	
	Content Complexity: DOK Level 2: Basic		
	Application of Skills & Concepts		
MAFS.6.RP.1.2	Understand the concept of a unit rate a/b	Page 10; Items using the	MFAS: Book
	associated with a ratio a:b with $b \neq 0$, and use	comparison of a ratio will	<u>Rates</u>
	rate language in the context of a ratio	use whole numbers. Rates	
	relationship. For example, "This recipe has a	can be expressed as	<u>Virtual</u>
	ratio of 3 cups of flour to 4 cups of sugar, so	fractions, with ":" or with	<u>Manipulative</u> :
	there is 3/4 cup of flour for each cup of sugar."	words. Items may involve	<u>Planet Size</u>
	"We paid \$75 for 15 hamburgers, which is a	mixed units within each	Comparison:
	rate of \$5 per hamburger."	system (e.g. convert	<u>Ratio</u>
		hours/min to seconds).	
	Content Complexity: DOK Level 2: Basic	Name the amount of either	
	Application of Skills & Concepts	quantity in terms of the	
		other as long as one of the	
		values is one unit.	
MAFS.6.RP.1.3	Use ratio and rate reasoning to solve real-	Pages 11; Rates can be	MFAS: <u>The</u>
	world and mathematical problems, e.g., by	expressed as fractions, with	Meaning of Pi
	reasoning about tables of equivalent ratios,	":" or with words. Items may	
	tape diagrams, double number line diagrams,	involve mixed units within	<u>Lesson</u> : <u>Don't</u>
	or equations.	each system (e.g. convert	Chase a Car!

	es of equivalent ratios relating	hours/min to seconds).	There is a
•	with whole-number	Percent found as a rate per	better way
	ents, find missing values in the	100. Quadrant I only for	
tables, and	d plot the pairs of values on the	MAFS.6.RP.1.3a.	
coordinate	e plane. Use tables to compare		
ratios.			
<i>b)</i> Solve unit	rate problems including those		
involving u	init pricing and constant speed.		
	le, if it took 7 hours to mow 4		
lawns, the	n at that rate, how many lawns		
	nowed in 35 hours? At what rate		
	s being mowed?		
	cent of a quantity as a rate per		
	30% of a quantity means 30/100		
	quantity); solve problems		
_	inding the whole, given a part		
and the pe			
-	easoning to convert		
	ent units; manipulate and		
	units appropriately when		
	g or dividing quantities.		
-	d the concept of Pi as the ratio		
of the circ	umference of a circle to its		
diameter.			
	<u>lexity</u> : DOK Level 2: Basic		
Application of	Skills & Concepts		

Domain: The Number System

Cluster 1 (Major): Apply and extend previous understandings of multiplication and division to divide fractions by fractions.

Standard Code	Standard	Assessment Limit(s)	Resources
<u>MAFS.6.NS.1.1</u>	Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions, e.g., by using visual fraction models and equations to represent the problem. For example, create a story context for $(2/3) \div (3/4)$ and use a visual fraction model to show the quotient; use the relationship between multiplication and division to explain that $(2/3) \div (3/4) = 8/9$ because 3/4 of 8/9 is 2/3. (In general, (a/b) ÷ (c/d) = ad/bc.) How much chocolate will each person get if 3 people share 1/2 lb of chocolate equally? How many 3/4-cup servings are in 2/3 of a cup of yogurt? How wide is a rectangular strip of land with length 3/4 mi and area 1/2	Page 12; At least the divisor or dividend needs to be a non-unit fraction. Dividing a unit fraction by a whole number or vice versa (e.g., $\frac{1}{a} \div q$ or $q \div \frac{1}{a}$, where <i>a</i> is a whole number) is below grade level.	MFAS: Juicing Fractions Lesson: Dividing by Fractions Discovery

square mi?	
<u>Content Complexity:</u> DOK Level 2: Basic Application of Skills & Concepts	

Cluster 2 (Additional): Compute fluently with multi-digit numbers and find common factors and multiples.

Standard Code	Standard	Assessment Limit(s)	Resources
MAFS.6.NS.2.2	Fluently divide multi-digit numbers using the	Page 13; Items may only	MFAS: Long
	standard algorithm.	have 5-digit dividends	Division-2
		divided by 2-digit divisors or	
	Content Complexity: DOK Level 1: Recall	4-digit dividends divided by	Lesson:
		2- or 3-digit divisors.	Cracking the
		Numbers in items are	Code: A
		limited to non-decimal	<u>Division</u>
		rational numbers.	Challenge
MAFS.6.NS.2.3	Fluently add, subtract, multiply, and divide	Page 14; Items may include	MFAS:
	multi-digit decimals using the standard	values to the thousandths	Multiplying
	algorithm for each operation.	place. Items may be set up	<u>Multi-digit</u>
		in standard algorithm form.	Decimals
	Content Complexity: DOK Level 1: Recall		
			Lesson:
			Where Will
			We Stay?
MAFS.6.NS.2.4	Find the greatest common factor of two whole	Page 15; Whole numbers	MFAS: Using
	numbers less than or equal to 100 and the	less than or equal to 100.	<u>the</u>
	least common multiple of two whole numbers	Least common multiple of	Distributive
	less than or equal to 12. Use the distributive	two whole numbers less	Property
	property to express a sum of two whole	than or equal to 12.	
	numbers 1–100 with a common factor as a		Lassan
	multiple of a sum of two whole numbers with		Lesson:
	no common factor. <i>For example, express 36</i> +		Factoring out
	8 as 4 (9 + 2).		the Greatest
	Contant Complexity DOK Level 2. Posis		
	Content Complexity: DOK Level 2: Basic		
	Application of Skills & Concepts		

Cluster 3 (Major): Apply and extend previous understandings of numbers to the system of rational numbers.

Standard Code	Standard	Assessment Limit(s)	Resources
MAFS.6.NS.3.5	Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.	Page 16; Items should not require the student to perform an operation.	MFAS: <u>Relative</u> <u>Integers</u> <u>Lesson</u> : <u>Positive or</u> <u>Negative, It's</u> <u>All About</u>

			Shopping!
	Content Complexity: DOK Level 2: Basic		
	Application of Skills & Concepts		
MAFS.6.NS.3.6	Understand a rational number as a point on	Pages 17; Plotting of points	MFAS: Point
	the number line. Extend number line diagrams	in the coordinate plane	Locations
	and coordinate axes familiar from previous	should include some	
	grades to represent points on the line and in	negative values (not just	
	the plane with negative number coordinates.	first quadrant). Do not	Lesson:
	a) Recognize opposite signs of numbers as	exceed a 10 × 10 coordinate	Modern Math
	indicating locations on opposite sides of 0	grid, though scales can vary.	<u>Warfare</u>
	on the number line; recognize that the opposite of the opposite of a number is		
	the number itself, e.g., $-(-3) = 3$, and that		
	0 is its own opposite.		
	b) Understand signs of numbers in ordered		
	pairs as indicating locations in quadrants		
	of the coordinate plane; recognize that		
	when two ordered pairs differ only by		
	signs, the locations of the points are		
	related by reflections across one or both		
	axes.		
	c) Find and position integers and other		
	rational numbers on a horizontal or		
	vertical number line diagram; find and		
	position pairs of integers and other		
	rational numbers on a coordinate plane.		
	Content Complexity: DOK Level 2: Basic		
	Application of Skills & Concepts		
MAFS.6.NS.3.7	Understand ordering and absolute value of	Page 18; N/A	MFAS:
	rational numbers.		<u>Absolute</u>
	a) Interpret statements of inequality as		<u>Altitudes</u>
	statements about the relative position of		
	two numbers on a number line diagram.		Problem-
	For example, interpret -3 > -7 as a		Solving Task:
	statement that -3 is located to the right of		Above and
	-7 on a number line oriented from left to		Below Sea
	<i>right. b)</i> Write, interpret, and explain statements		Level
	of order for rational numbers in real-world		
	contexts. For example, write -3 °C > -7 °C		
	to express the fact that -3 °C is warmer		
	than -7 °C.		
	<i>c)</i> Understand the absolute value of a		
	rational number as its distance from 0 on		
	the number line; interpret absolute value		
	as magnitude for a positive or negative		
	quantity in a real-world situation. For		
	example, for an account balance of -30		
	dollars, write -30 = 30 to describe the		

	 size of the debt in dollars. d) Distinguish comparisons of absolute value from statements about order. For example, recognize that an account balance less than -30 dollars represents a debt greater than 30 dollars. 		
	<u>Content Complexity</u> : DOK Level 2: Basic Application of Skills & Concepts		
MAFS.6.NS.3.8	Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates	Page 17; Plotting of points in the coordinate plane should include some negative	MFAS: <u>Garden</u> <u>Coordinates</u>
	and absolute value to find distances between points with the same first coordinate or the same second coordinate.	values (not just first quadrant). Numbers in MAFS.6.NS.3.8 must be positive or negative	MEA: <u>Dig It!</u>
	<u>Content Complexity</u> : DOK Level 2: Basic Application of Skills & Concepts	rational numbers. Do not use polygons/vertices for MAFS.6.NS.3.8. Do not exceed a 10 × 10 coordinate grid, though scales can vary.	

Domain: Expressions and Equations

Cluster 1 (*Major*): <u>Apply and extend previous understandings of arithmetic to algebraic expressions.</u>

Standard Code	Standard	Assessment Limit(s)	Resources
MAFS.6.EE.1.1	Write and evaluate numerical expressions	Page 19; Whole number	MFAS: Paul's
	involving whole-number exponents.	bases. Whole number	<u>Pennies</u>
		exponents.	
	Content Complexity: DOK Level 1: Recall		Lesson: It's
			Hip 2b^2
			eXponent^s
MAFS.6.EE.1.2	Write, read, and evaluate expressions in which	Page 20; N/A	MFAS: Writing
	letters stand for numbers.		Expressions
	<i>a)</i> Write expressions that record operations		
	with numbers and with letters standing for		Lesson: Feel
	numbers. For example, express the		the Heat!
	calculation "Subtract y from 5" as 5 – y.		
	b) Identify parts of an expression using		
	mathematical terms (sum, term, product,		
	factor, quotient, coefficient); view one or		
	more parts of an expression as a single		
	entity. For example, describe the		
	expression 2 (8 + 7) as a product of two		
	factors; view (8 + 7) as both a single entity		
	and a sum of two terms.		
	<i>c)</i> Evaluate expressions at specific values of		
	their variables. Include expressions that		
	arise from formulas used in real-world		

	problems. Perform arithmetic operations, including those involving whole-number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations). For example, use the formulas $V = s^3$ and A $= 6 s^2$ to find the volume and surface area of a cube with sides of length $s = 1/2$.		
	<u>Content Complexity</u> : DOK Level 2: Basic Application of Skills & Concepts		
MAFS.6.EE.1.3	Apply the properties of operations to generate equivalent expressions. For example, apply the distributive property to the expression 3 $(2 + x)$ to produce the equivalent expression $6 + 3x$; apply the distributive property to the expression $24x + 18y$ to produce the equivalent expression 6 $(4x + 3y)$; apply properties of operations to $y + y + y$ to produce the equivalent expression $3y$.	Page 21; Positive rational numbers, values may include exponents. Variables must be included in the expression. For items using distribution, coefficients may be fractions before distribution but must be integer values after simplification.	MFAS: Equal Sides, Equivalent Expressions Lesson: Collectively Collecting
MAFS.6.EE.1.4	<u>Content Complexity</u> : Level 1: Recall Identify when two expressions are equivalent (i.e., when the two expressions name the same number regardless of which value is substituted into them). For example, the expressions y + y + y and 3y are equivalent because they name the same number regardless of which number y stands for. <u>Content Complexity</u> : Level 2: Basic Application of Skills & Concepts	Page 22; Numbers in items must be nonnegative rational numbers. Variables must be included in the expression.	MFAS: Identifying Equivalent Expressions Lesson: Have You Met Your Match?

Cluster 2 (Major): Reason about and solve one-variable equations and inequalities.

Standard Code	Standard	Assessment Limit(s)	Resources
MAFS.6.EE.2.5	Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality	Pages 23 & 24; Numbers in items must be nonnegative rational numbers. One- variable linear equations and inequalities. An equation or inequality	MFAS: Finding Solutions of Equations Lesson: How Much was
	true. <u>Content Complexity</u> : Level 2: Basic Application of Skills & Concepts	should be given if a context is included. Inequalities are restricted to < or >. Lists of numbers should not use set notation	Lunch?
MAFS.6.EE.2.6	Use variables to represent numbers and write expressions when solving a real-world or	Page 25; Numbers in items should not require students	MFAS: Writing Real-World

	mathematical problem; understand that a	to perform operations with	Expressions
	variable can represent an unknown number,	negative rational numbers	
	or, depending on the purpose at hand, any	or result in answers with	Lesson:
	number in a specified set.	negative rational numbers.	Decoding
		Expressions must contain at	Word Phrases
	<u>Content Complexity</u> : Level 3: Strategic Thinking & Complex Reasoning	least one variable.	
MAFS.6.EE.2.7	Solve real-world and mathematical problems	Page 26; Numbers in items	MFAS:
	by writing and solving equations of the form x	should not require students	University
	+ $p = q$ and $px = q$ for cases in which p , q and x	to perform operations with	Parking
	are all non-negative rational numbers.	negative rational numbers	
		or result in answers with	Lesson: Bake
		negative rational numbers.	Sale
	<u>Content Complexity</u> : Level 2: Basic Application	Items must be one-step	
	of Skills & Concepts	linear equations with one	
		variable.	
MAFS.6.EE.2.8	Write an inequality of the form x > c or x < c to	Page 27; Numbers in items	MFAS:
	represent a constraint or condition in a real-	should not require students	Transportatio
	world or mathematical problem. Recognize	to perform operations with	<u>n Number</u>
	that inequalities of the form x > c or x < c have	negative rational numbers	<u>Lines</u>
	infinitely many solutions; represent solutions	or result in answers with	
	of such inequalities on number line diagrams.	negative rational numbers.	Lesson:
		Context in real-world items	Writing
	Content Complexity: Level 2: Basic Application	should be continuous or	Inequalities to
	of Skills & Concepts	close to continuous.	Represent
		Inequalities are limited to <	Situations
		or >.	

Cluster 3 (Major): Represent and analyze quantitative relationships between dependent and independent variables.

Standard Code	Standard	Assessment Limit(s)	Resources
<u>MAFS.6.EE.3.9</u>	Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. For example, in a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and write the equation d = 65t to represent the relationship between distance and time.	Page 29; Items must involve relationships and/or equations of the form $y = px$ or y = x + p. Numbers in items should not require students to perform operations with negative rational numbers or result in answers with negative rational numbers. Variables need to be defined.	MFAS: Bicycling Equations Lesson: The Speeding Ticket (Part 1)

Domain: Geometry

Cluster 1 (*Supporting*): <u>Solve real-world and mathematical problems involving area, surface area, and volume.</u>

Standard Code	Standard	Assessment Limit(s)	Resources
MAFS.6.G.1.1	Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in the context of solving real-world and mathematical problems.	Page 29; Numbers in items must be nonnegative rational numbers. Limit shapes to those that can be decomposed or composed into rectangles and/or right triangles.	MFAS: Lost Key Lesson: Breaking Up is Hard to Do
MAFS.6.G.1.2	Content Complexity: Level 2: Basic Application of Skills & ConceptsFind the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas $V = I w h$ and $V = B h$ to find volumes of right rectangular prisms with fractional edge lengths in the context of solving real-world and mathematical problems.	Page 30; Prisms in items must be right rectangular prisms. Unit fractional edge lengths for the unit cubes used for packing must have a numerator of 1	MFAS: Clay Blocks Lesson: How much can it hold?
<u>MAFS.6.G.1.3</u>	Content Complexity: Level 2: Basic Application of Skills & ConceptsDraw polygons in the coordinate plane given coordinates for the vertices; use coordinates to find the length of a side joining points with the same first coordinate or the same second coordinate. Apply these techniques in the context of solving real-world and mathematical problems.Content Complexity: Level 2: Basic Application of Skills & Concepts	Page 31; Items may use all four quadrants. When finding side length, limit polygons to traditional orientation (side lengths perpendicular to axes).	MFAS: Patio Area Lesson: The Mystery of Crop Circles
<u>MAFS.6.G.1.4</u>	Represent three-dimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures. Apply these techniques in the context of solving real-world and mathematical problems. <u>Content Complexity</u> : Level 2: Basic Application of Skills & Concepts	Pages 32-33; Numbers in items must be positive rational numbers. Three- dimensional figures are limited to rectangular prisms, triangular prisms, rectangular pyramids, and triangular pyramids	<u>MFAS</u> : <u>Skateboard</u> <u>Ramp</u> <u>Lesson: Box it</u> <u>Up, Wrap it</u> <u>Up</u>

Domain: Statistics & Probability

Standard Code	Standard	Assessment Limit(s)	Resources
MAFS.6.SP.1.1	Recognize a statistical question as one that anticipates variability in the data related to the question and accounts for it in the answers. For example, "How old am 1?" is not a statistical question, but "How old are the students in my school?" is a statistical question because one anticipates variability in students' ages.	page 34; N/A	MFAS: TV Statistics Lesson: Statistical Questions
	Content Complexity: Level 1: Recall		
MAFS.6.SP.1.2	Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape. <u>Content Complexity</u> : Level 2: Basic Application of Skills & Concepts	Page 35; Circle graphs and line graphs may not be used. Items should include a distribution.	MFAS: Math Test Shape Lesson: Comparing and Contrasting Data Sets Using Measures of Center and Spread
MAFS.6.SP.1.3	Recognize that a measure of center for a numerical data set summarizes all if its values with a single number, while a measure of variation describes how its values vary with a single number. <u>Content Complexity</u> : Level 1: Recall	Page 36; Data sets in items must be numerical data sets.	MFAS: <u>Compare</u> <u>Measures of</u> <u>Center and</u> <u>Variability</u> <u>Lesson</u> : <u>Universal GPA</u>

Cluster 1 (Additional): <u>Develop understanding of statistical variability.</u>

Cluster 2 (Additional): <u>Summarize and describe distributions.</u>

Standard Code	Standard	Assessment Limit(s)	Resources
MAFS.6.SP.2.4	Display numerical data in plots on a number line, including dot plots, histograms, and box	Page 37; All plots must be displayed on a number line	<u>MFAS</u> : <u>Shark</u> <u>Attack</u>
	plots.	or coordinate grid.	Lesson:
	<u>Content Complexity Rating</u> : Level 2: Basic Application of Skills & Concepts		What's Your Favorite?

MAFS.6.SP.2.5	 Summarize numerical data sets in relation to their context, such as by: a) Reporting the number of observations. b) Describing the nature of the attribute under investigation, including how it was measured and its units of measurement. c) Giving quantitative measures of center (median and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered. d) Relating the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered. 	Pages 38-39; Displays should include only dot/line plots, box plots, or histograms.	MFAS: Analyzing Physical Activity Lesson: Fun with Surveys
	<u>Content Complexity Rating</u> : Level 3: Strategic Thinking & Complex Reasoning		

Grade 6 Mathematics Resources

Course Descriptions, Standards, and Resources

- Grade 6 Mathematics Course Description
- Grade 6 Mathematics Advanced Course Description
- Grade 6 Math Student Resources
- <u>Text Complexity Resources</u>
- Florida Assessments for Instruction in Mathematics (FAIM)
- <u>Student Support Resources</u>

Florida Standards Assessment Assistance

- FSA Portal
- <u>Test Item Specifications</u>
- <u>Test Design Summary and Blueprint</u>
- FSA Fact Sheet
- <u>Calculator and Reference Sheet Policy</u>
- <u>Reference Sheet</u>
- Understanding FSA Reports