Grade 5 Suggested Activities and Supplies to Support Mathematics Education

Below are activities, lessons, parent resources and literature that can be used to enhance and/or support $5^{\text {th }}$ grade math instruction in the classroom. These activities use hands on concrete models to support conceptual understanding of the five domains. The activities take students from the concrete model to representational and the abstract understanding of the Florida Standards. They are written as a menu of options you may choose from dependent on the needs of your students.

Operations and Algebraic Thinking

[^0]A bibliography of children's literature with a focus on expressions and numerical patterns is provided, which can be integrated so that students can connect through literature.

1. It Started with Pizza, Dawn McMillan
2. The World of Trade, Dawn McMillan
3. Night Skies, Dawn McMillan
4. Patterns in Nature, Dawn McMillan
5. My Lemonade Stand, Dawn McMillan
```
Watch Out for Parentheses 1
http://www.cpalms.org/Public/PreviewResourceUpload/Preview/43071
Words to Expressions 1
http://www.cpalms.org/Public/PreviewResourceUpload/Preview/43068
Fractal Tool
http://www.cpalms.org/Public/PreviewResourceUpload/Preview/43068
```

Everything Balances Out in the End: Balancing Algebraic Understanding	http://www.cpalms.org/Public/PreviewResourceUrl/Preview/7892 This lesson focuses on simplification of numerical expressions using a pan balance applet. The Pan Balance - Numbers applet will allow students to practice order of operations by having them input equivalencies (which the module will record in the table on the right) and by selecting one operation at a time, they will come to see algebraic logic in their simplifications. MAFS.5.OA.1.1: Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols.
Fly Runners Order of Operations MEA	http://www.cpalms.org/Public/PreviewResource/Preview/69627 This MEA is designed so that students will practice knowledge learned from Order of Operations. In the process, students will analyze marketing and advertising data in order to help Fly Runners Running Shoes choose the appropriate magazine to advertise with. MAFS.5.OA.1.1: Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols.
Chairs Around the Table	http://www.cpalms.org/Public/PreviewResourceUrl/Preview/9841 This lesson allows exploration for students to discover effects of changes in seating when tables are moved together. Since pushing tables together makes the sides of the tables inaccessible, the teacher can use this to get students to come up with rules for linear patterns. These rules can be written on the board using variables to lay the groundwork for understanding the use of variables. MAFS.5.OA.1.2: Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them.

Gummy vs. Gum (Number Pattern)	$\begin{array}{l}\text { http://www.cpalms.org/Public/PreviewResourceUrl/Preview/7633 } \\ \text { "In this lesson, students use gummy bears and sticks of gum to discover a } \\ \text { number pattern and write an equation that describes it. This lesson should } \\ \text { be conducted after students have worked with patterns and one- and two- } \\ \text { step equations." from the Beacon Learning Center. }\end{array}$		
	$\begin{array}{l}\text { Cool School } \\ \text { MAFS.5.OA.1.2: Write simple expressions that record calculations with } \\ \text { numbers, and interpret numerical expressions without evaluating them. }\end{array}$		
http://www.cpalms.org/Public/PreviewResourceUrl/Preview/7633			
In this lesson, students will take an imaginary trip to my lake house. They			
will solve a variety of real life word problems. Once at the lake they will			
experience many activities where they will need number sense. For the			
assessment, students will record and analyze data in order to determine who			
the best angler was at "Cool School."		$\}$	MAFS.5.OA.2.3: Generate two numerical patterns using two given rules.
:---			
Identify apparent relationships between corresponding terms. Form ordered			
pairs consisting of corresponding terms from the two patterns, and graph the			
ordered pairs on a coordinate plane.			

Number and Operations in Base Ten

Cluster 1: Understand the place value system Cluster 2: Perform operations with multi-digit whole numbers and with decimals to hundredths	A bibliography of children's literature with a focus on place value and the power of ten is provided, which can be integrated so that
students can connect through literature.	

$\left.\begin{array}{|c|l|}\hline \text { Prediction Place Value Patterns! } & \begin{array}{l}\text { MAFS.5.NBT.1.1: Recognize that in a multi-digit number, a digit in } \\ \text { one place represents } 10 \text { times as much as it represents in the place to its } \\ \text { right and } 1 / 10 \text { of what it represents in the place to its left. }\end{array} \\ \hline \text { Multiplying Around the Block } & \begin{array}{l}\text { http://www.cpalms.org/Public/PreviewResourceLesson/Preview/72225 } \\ \text { In this lesson, students will use guided notes to assist them in } \\ \text { identifying and analyzing patterns among place value positions. } \\ \text { Students will also watch an educational video to help them to draw } \\ \text { conclusions, make connections and provide practice of the skill. }\end{array} \\ \hline \text { MAFS.5.NBT.1.1: Recognize that in a multi-digit number, a digit in } \\ \text { one place represents } 10 \text { times as much as it represents in the place to its } \\ \text { right and 1/10 of what it represents in the place to its left }\end{array}\right\}$

	MAFS.5.NBT.1.3: Read, write, and compare decimals to thousandths. a. Read and write decimals to thousandths using base-ten numerals, number names, and expanded form, e.g., $347.392=3$ $\times 100+4 \times 10+7 \times 1+3 \times(1 / 10)+9 \times(1 / 100)+2 \times$ (1/1000). b. Compare two decimals to thousandths based on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons.
Building a Better Baseball Team	http://www.cpalms.org/Public/PreviewResourceLesson/Preview/51459
	In this MEA activity, students will be comparing and contrasting whole and decimal numbers in order to recruit a baseball player(s). MAFS.5.NBT.1.3: Read, write, and compare decimals to thousandths. a. Read and write decimals to thousandths using base-ten numerals, number names, and expanded form, e.g., $347.392=3$ $\times 100+4 \times 10+7 \times 1+3 \times(1 / 10)+9 \times(1 / 100)+2 \times$ (1/1000). b. Compare two decimals to thousandths based on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons.

Area Models to Algorithms Your students had extensive work with the concrete and representational aspect of this standard. You are bringing them to the abstract. Be sure they see the connection between the area model and partial product to the algorithm. Bridge that gap from representational to abstract by showing them both side by side. Don't take away the representational until they see the connection. Some will see the connection sooner than others. Be patient and it will pay off in the end.	http://www.cpalms.org/Public/PreviewResource/Preview/73394 Students will investigate the standard algorithm of two-digit by twodigit multiplication and how it connects and relates to the area model. This will provide an introduction to the standard algorithm. MAFS.5.NBT.2.5: Fluently multiply multi-digit whole numbers using the standard algorithm.
Area Model of Multiplication Using Base 10 Manipulatives (Double Digit Multiplication) Your students had extensive work with the concrete and representational aspect of this standard. You are bringing them to the abstract. Be sure they see the connection between the area model and partial product to the algorithm. Bridge that gap from representational to abstract by showing them both side by side. Don't take away the representational until they see the connection. Some will see the connection sooner than others. Be patient and it will pay off in the end.	http://www.cpalms.org/Public/PreviewResource/Preview/8112 Students will use base 10 manipulatives to build a rectangular array to represent double digit multiplication. Students will make the connection between the standard algorithm and the rectangular array MAFS.5.NBT.2.5: Fluently multiply multi-digit whole numbers using the standard algorithm.

Formative Assessments for MAFS.5.NBT.2.5	
Complete the Multiplication Problem	http://www.cpalms.org/Public/PreviewResource/Preview/58070 Students are asked to finish a multiplication problem that has already been started using the standard algorithm.
Find the Multiplication Error	http://www.cpalms.org/Public/PreviewResource/Preview/58067 Students are asked to find the error in a multiplication problem involving a three-digit and a two-digit number.
Multiplying Using the Standard Algorithm	http://www.cpalms.org/Public/PreviewResource/Preview/58068 Students are asked to complete two multiplication problems using the standard algorithm.
More Multiplication Using the Standard Algorithm	http://www.cpalms.org/Public/PreviewResource/Preview/58072 Students are asked to complete two multiplication problems using the standard algorithm.

Easy as Pie Division!	http://www.cpalms.org/Public/PreviewResource/Preview/49754 This is a hands-on lesson to show the relationship between division and multiplication. It provides a different method for solving long division that my students love. MAFS.5.NBT.2.6: Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.
Dividing for Equal Groups	http://www.cpalms.org/Public/PreviewResource/Preview/73315 Given situational stories, students will use base 10 blocks to model division in order to solve problems. Stories will include a variety of problems including 2 digit dividends by 1 digit divisors, 3 and 4 digit dividends by 1 digit divisors, and 3 and 4 digit dividends by 2 digit divisors. MAFS.5.NBT.2.6: Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.
Diving Deeper into Division	http://www.cpalms.org/Public/PreviewResource/Preview/36233 This lesson introduces students to dividing with 2 digit divisors Students are asked to apply strategies that they learned in dividing with 1 digit divisors such as partial quotients or breaking numbers apart using the distributive property.

	MAFS.5.NBT.2.6: Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.
Make a Funny Partial Quotient Division Story	http://www.cpalms.org/Public/PreviewResource/Preview/72731
	This lesson introduces students to the area model and the partial quotient model to solve division problems with 2-digit divisors. Students are asked to apply both strategies to solve funny division problems that they help create by inserting information that is left blank in the story problems.
	MAFS.5.NBT.2.6: Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.
Dividing for Equal Groups	$\underline{\text { http://www.cpalms.org/Public/PreviewResourceLesson/Preview/73315 }}$
Given situational stories, students will use base 10 blocks to model	
division in order to solve problems. Stories will include a variety of	
problems including 2 digit dividends by 1 digit divisors, 3 and 4 digit	
dividends by 1 digit divisors, and 3 and 4 digit dividends by 2 digit	
divisors.	
MAFS.5.NBT.2.6: Find whole-number quotients of whole numbers	

	based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.
What Are They Thinking? Understanding Division	$\underline{\text { http://www.cpalms.org/Public/PreviewResource/Preview/40001 }}$
	This lesson uses a discovery approach to exploring the meaning of division. The students will utilize math practice standards as they analyze math solutions and explain their own solutions.
	MAFS.5.NBT.2.6: Find whole-number quotients of whole numbers
	with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, and/or the
	relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.
Patty's Party Planning	$\underline{\text { http://www.cpalms.org/Public/PreviewResource/Preview/47915 }}$
	Students will help a party planner determine which party location is
	banquet hall rental based on the number of people, number of tables
	and hourly rental of the location by using division and multiplication.
	MAFS.5.NBT.2.6: Find whole-number quotients of whole numbers
	with up to four-digit dividends and two-digit divisors, using strategies
	based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain

Formative Assessments for MAFS.5.NBT.2.6			
$\begin{array}{l}\text { Driving to Alaska } \\ \text { the calculation by using equations, rectangular arrays, and/or area } \\ \text { models. }\end{array}$			
Analyzing and Applying Division	$\begin{array}{l}\text { http://www.cpalms.org/Public/PreviewResource/Preview/58634 } \\ \text { Students are asked to solve a division word problem with a two-digit } \\ \text { divisor using a strategy based on place value. }\end{array}$		
Dividing Using an Area Model with Larger Divisors	$\begin{array}{l}\text { http://www.cpalms.org/Public/PreviewResource/Preview/58640 }\end{array}$		
Students are asked to analyze and explain another student's division			
work in terms of a partial quotients strategy and to apply this strategy			
to another division problem.		$\}$	http://www.cpalms.org/Public/PreviewResource/Preview/58633
:---			
Students are asked to interpret a division problem with a two-digit			
divisor that has been completed using an area model. If the student is			
successful, he or she is asked to determine the solution to a division			
problem with a two-digit divisor using an area model.			

Dividing Decimals Investigation	$\begin{array}{l}\text { http://www.cpalms.org/Public/PreviewResourceLesson/Preview/27706 } \\ \text { In this introductory lesson, students test how the basic operations } \\ \text { performed on the dividend and divisor affect the quotient of a pair of } \\ \text { numbers. Students then conclude whether the results of their trials can } \\ \text { be applied to solve problems with a decimal divisor. }\end{array}$
	$\begin{array}{l}\text { MAFS.5.NBT.2.7: Add, subtract, multiply, and divide decimals to } \\ \text { hundreaths, using concrete models or drawings and strategies based on } \\ \text { place value, properties of operations, and/or the relationship between } \\ \text { addition and subtraction; relate the strategy to a written method and } \\ \text { explain the reasoning used. }\end{array}$
I See! Division with the Distributive Property	$\underline{\text { http://www.cpalms.org/Public/PreviewResource/Preview/72779 }}$
In this lesson, students will use visual models to represent division	
using the distributive property as a strategy. Students will have an	
understanding of how to decompose numbers in the context of division	
problems using an area model.	
MAFS.5.NBT.2.7: Add, subtract, multiply, and divide decimals to	

How Much Did I Earn? Division with Decimals

http://www.cpalms.org/Public/PreviewResourceLesson/Preview/73458

This lesson will introduce division of decimals using place value decomposition. Students will use base 10 blocks, division strategies and place value knowledge to divide decimals by whole numbers.

MAFS.5.NBT.2.7: Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.

Numbers and Operations - Fractions


```
Diffy Virtual Manipulative
http://www.cpalms.org/Public/PreviewResourceUrl/Preview/18471
Egyptian Fractions
http://www.cpalms.org/Public/PreviewResourceUpload/Preview/431
71
Fractions - Adding
http://www.cpalms.org/Public/PreviewResourceUrl/Preview/30293
Banana Pudding
http://www.cpalms.org/Public/PreviewResourceUpload/Preview/431
81
Folding Strips of Paper
http://www.cpalms.org/Public/PreviewResourceUpload/Preview/431
53
What is 23\div5?
http://www.cpalms.org/Public/PreviewResourceUpload/Preview/430
77
National Library of Virtual Manipulatives
http://nlvm.usu.edu/en/nav/grade_g_2.html
```

Picture This! Fractions as Division	$\underline{\text { http://www.cpalms.org/Public/PreviewResourceLesson/Preview/46576 }}$
In this lesson the student will apply and extend previous understandings	
of division to represent division as a fraction. This includes	
representations and word problems where the answer is a fraction.	
MAFS.5.NF.2.3: Interpret a fraction as division of the numerator by the	
denominator (a/b $=\mathrm{a} \div \mathrm{b})$. Solve word problems involving division of	
whole numbers leading to answers in the form of fractions or mixed	
numbers, e.g., by using visual fraction models or equations to represent	
the problem	

Sharing Fairly	http://www.cpalms.org/Public/PreviewResource/Preview/28839 The students will connect fractions with division. They will solve word problems involving dividing whole numbers by using the strategy of drawing a model and/or equations with a fraction or mixed number for the answer. Next they will write word problems with a story context that represents problems involving division of whole numbers that lead to a fraction or mixed number answer. MAFS.5.NF.2.3: Interpret a fraction as division of the numerator by the denominator ($\mathrm{a} / \mathrm{b}=\mathrm{a} \div \mathrm{b}$). Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fraction models or equations to represent the problem.
Those Pesky Remainders	http://www.cpalms.org/Public/PreviewResource/Preview/29139 This is a lesson to help students understand how to interpret the remainder in a division problem. Real world problems are presented in a PowerPoint so students may visualize situations and discover the four treatments of a remainder. Fourth grade does not have to translate remainders to decimals or fractions. MAFS.5.NF.2.3: Interpret a fraction as division of the numerator by the denominator ($\mathrm{a} / \mathrm{b}=\mathrm{a} \div \mathrm{b}$). Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fraction models or equations to represent the problem.

Discovering Common Denominators	$\underline{\text { http://www.cpalms.org/Public/PreviewResourceLesson/Preview/30113 }}$
Students use pattern blocks to represent fractions with unlike	
denominators. Students discover that they need to convert all the pattern	
blocks to the same shape in order to add them. Therefore, they find and	
use common denominators for the addition of fractions.	
MAFS.5.NF.1.1: Add and subtract fractions with unlike denominators	

fractions in such a way as to produce an equivalent sum or difference of

fractions with like denominators.\end{array}\right\} $$
\begin{array}{l}\text { MAFS.5.NF.1.2: Solve word problems involving addition and }\end{array}
$$\right\} $$
\begin{array}{l}\text { subtraction of fractions referring to the same whole, including cases of } \\
\text { unlike denominators, e.g., by using visual fraction models or equations } \\
\text { to represent the problem. Use benchmark fractions and number sense of } \\
\text { fractions to estimate mentally and assess the reasonableness of answers. }\end{array}
$$\right\}\)

Fractions make the real WORLD problems go round	http://www.cpalms.org/Public/PreviewResourceLesson/Preview/73030 In this lesson students will use a graphic organizer to solve addition and subtraction word problems. Students will create their own word problems in PowerPoint, by using pen and paper, or dry erase boards to help them to connect to and understand the structure of word problems. MAFS.5.NF.1.2: Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators, e.g., by using visual fraction models or equations to represent the problem. Use benchmark fractions and number sense of fractions to estimate mentally and assess the reasonableness of answers.
Using Models to Add Fractions with Unlike Denominators	http://www.cpalms.org/Public/PreviewResourceLesson/Preview/28336 This lesson is specific to adding fractions with unlike denominators. It requires students to already have a working knowledge of adding fractions with common denominators, and equivalent fractions. Subtracting fractions with unlike denominators will follow in a subsequent lesson, as the two should be taught on separate days. MAFS.5.NF.1.1: Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators.
Using Models to Subtract Fractions with Unlike Denominators	http://www.cpalms.org/Public/PreviewResourceLesson/Preview/29664 This lesson is specific to subtracting fractions with unlike denominators. It requires students to already have a working knowledge of subtracting fractions with common denominators, and equivalent fractions. Adding fractions with unlike denominators was taught in a previous lesson, and the two should be taught on separate days.

$\left.\left.\begin{array}{|c|l|}\hline & \begin{array}{l}\text { MAFS.5.NF.1.1: Add and subtract fractions with unlike denominators } \\ \text { (including mixed numbers) by replacing given fractions with equivalent } \\ \text { fractions in such a way as to produce an equivalent sum or difference of } \\ \text { fractions with like denominators. }\end{array} \\ \hline \text { Aaron and Anya's Discovery: Adding Fractions with Unlike } & \underline{\text { http://www.cpalms.org/Public/PreviewResourceLesson/Preview/72825 }} \\ \text { Denominators } & \begin{array}{l}\text { In this situational story, Aaron and Anya find several pieces of } \\ \text { ribbon/cord of varying fractional lengths. They decide to choose 3 } \\ \text { pieces and make a belt. All of the fractions have different denominators; } \\ \text { students have to determine common denominators in order to add the } \\ \text { fractional pieces. After students successfully add three fractional pieces, } \\ \text { they make a belt and label it with their fractional pieces. } \\ \text { MAFS.5.NF.1.1: Add and subtract fractions with unlike denominators }\end{array} \\ \text { (including mixed numbers) by replacing given fractions with equivalent } \\ \text { fractions in such a way as to produce an equivalent sum or difference of } \\ \text { fractions with like denominators. }\end{array}\right\} \begin{array}{l}\text { 要AFS.5.NF.1.2: Solve word problems involving addition and } \\ \text { subtraction of fractions referring to the same whole, including cases of } \\ \text { unlike denominators, e.g., by using visual fraction models or equations } \\ \text { to represent the problem. Use benchmark fractions and number sense of } \\ \text { fractions to estimate mentally and assess the reasonableness of answers. }\end{array}\right\}$

Let's Have a Fraction Party	MAFS.5.NF.1.1: Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators.
	http://www.cpalms.org/Public/PreviewResourceLesson/Preview/73106I In this lesson, students will use addition and subtraction of fractions with unlike denominators to solve word problems involving situations that arise with the children who were invited to a party. They will use fraction strips as number models and connect the algorithm with these real-life word problems.
MAFS.5.NF.1.2: Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators, e.g., by using visual fraction models or equations to represent the problem. Use benchmark fractions and number sense of fractions to estimate mentally and assess the reasonableness of answers.	
Multiplying a Fraction and a Fractions	http://www.cpalms.org/Public/PreviewResource/Preview/72343
This lesson focuses on providing students with real-world experiences where they will be required to multiply fractions. A variety of situational problems involving scaling are provided for different levels of learners. Students will be required to use visual fraction models or equations to represent the problem.	

MAFS.5.NF.2.4: Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction.
a. Interpret the product $(a / b) \times q$ as a parts of a partition of q into b equal parts; equivalently, as the result of a sequence of operations $a \times q \div b$. For example, use a visual fraction model to show $(2 / 3) \times 4=8 / 3$, and create a story context for this equation. Do the same with $(2 / 3) \times(4 / 5)=8 / 15$. (In general, $(a / b) \times(c / d)=a c / b d$.)
b. Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas.

MAFS.5.NF.2.5: Interpret multiplication as scaling (resizing), by:
a. Comparing the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication.
b. Explaining why multiplying a given number by a fraction greater than 1 results in a product greater than the given number (recognizing multiplication by whole numbers greater than 1 as a familiar case); explaining why multiplying a given number by

	a fraction less than 1 results in a product smaller than the given number; and relating the principle of fraction equivalence $a / b=$ $(n \times a) /(n \times b)$ to the effect of multiplying a / b by 1 . MAFS.5.NF.2.6: Solve real world problems involving multiplication of fractions and mixed numbers, e.g., by using visual fraction models or equations to represent the problem.
Area Models: Multiplying Fractions	http://www.cpalms.org/Public/PreviewResourceLesson/Preview/38004
	In this lesson students will investigate relationship between area models and the concept of multiplying fractions. Students will use area model to develop understanding of the concept of multiplying fractions as well as to find the product of two common fraction. The teacher will use the free application GeoGebra (see download link under Suggested Technology) to provide students with a visual representation of how area models can be used at the time of multiplying fractions. MAFS.5.NF.2.4: Apply and extend previous understandings of
	multiplication to multiply a fraction or whole number by a fraction. a. Interpret the product $(a / b) \times q$ as a parts of a partition of q into b equal parts; equivalently, as the result of a sequence of operations $a \times q \div b$. For example, use a visual fraction model to show (2/3) $\times 4=8 / 3$, and create a story context for this equation. Do the same with $(2 / 3) \times(4 / 5)=8 / 15$. (In general, $(a / b) \times(c / d)=$ $a c / b d$.

	and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas MAFS.5.NF.2.6: Solve real world problems involving multiplication of fractions and mixed numbers, e.g., by using visual fraction models or equations to represent the problem.
Banana Pudding	$\underline{\text { http://www.cpalms.org/Public/PreviewResource/Preview/43181 }}$
	The purpose of this task is to provide students with a concrete situation they can model by dividing a whole number by a unit fraction. For students who are just beginning to think about the meaning of division by a unit fraction (or students who have never cooked), the teacher can bring in a $1 / 4$ cup measuring cup so that students can act it out. If students can reason through parts (a) and (b) successfully, they will be well-situated to think about part (c) which could yield different solution methods. MAFS.5.NF.2.7: Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions. a. Interpret division of a unit fraction by a non-zero whole number, and compute such quotients. For example, create a story context for $(1 / 3) \div 4$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that (1/3) $\div 4=1 / 12$ because (1/12) $\times 4=$

	1/3. b. Interpret division of a whole number by a unit fraction, and compute such quotients. For example, create a story context for $4 \div(1 / 5)$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $4 \div(1 / 5)=20$ because $20 \times(1 / 5)=4$. c. Solve real world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions, e.g., by using visual fraction models and equations to represent the problem. For example, how much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$ of chocolate equally? How many 1/3-cup servings are in 2 cups of raisins?
Painting a Room	$\underline{\text { http://www.cpalms.org/Public/PreviewResource/Preview/43101 }}$
	The purpose of this task is to provide students with a situation in which it is natural for them to divide a unit fraction by a non-zero whole number. Determining the amount of paint that Kulani needs for each wall illustrates an understanding of the meaning of dividing a unit fraction by a non-zero whole number. MAFS.5.NF.2.7: Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions.

	a. Interpret division of a unit fraction by a non-zero whole number, and compute such quotients. For example, create a story context for $(1 / 3) \div 4$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $(1 / 3) \div 4=1 / 12$ because $(1 / 12) \times 4=$ 1/3. b. Interpret division of a whole number by a unit fraction, and compute such quotients. For example, create a story context for $4 \div(1 / 5)$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $4 \div(1 / 5)=20$ because $20 \times(1 / 5)=4$. c. Solve real world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions, e.g., by using visual fraction models and equations to represent the problem. For example, how much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$ of chocolate equally? How many 1/3-cup servings are in 2 cups of raisins?
How many servings of oatmeal?	http://www.cpalms.org/Public/PreviewResource/Preview/43121 This task provides a context for performing division of a whole number by a unit fraction. This problem is a "How many groups?" example of division: the "groups" in this case are the servings of oatmeal and the

	question are asking how many servings (or groups) there are in the package. MAFS.5.NF.2.7: Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions. a. Interpret division of a unit fraction by a non-zero whole number, and compute such quotients. For example, create a story context for $(1 / 3) \div 4$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $(1 / 3) \div 4=1 / 12$ because $(1 / 12) \times 4=$ 1/3. b. Interpret division of a whole number by a unit fraction, and compute such quotients. For example, create a story context for $4 \div(1 / 5)$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $4 \div(1 / 5)=20$ because $20 \times(1 / 5)=4$. c. Solve real world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions, e.g., by using visual fraction models and equations to represent the problem. For example, how much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$ of chocolate equally? How many 1/3-cup servings are in 2 cups of raisins?

Salad Dressing

	explain that $4 \div(1 / 5)=20$ because $20 \times(1 / 5)=4$. c. Solve real world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions, e.g., by using visual fraction models and equations to represent the problem. For example, how much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$ of chocolate equally? How many 1/3-cup servings are in 2 cups of raisins?
It's My Party and I'll Make Dividing by Fractions Easier if I Want to!!	http://www.cpalms.org/Public/PreviewResourceLesson/Preview/73798 During this lesson students will relate their understanding of whole number division situations to help them interpret situations involving dividing by unit fractions. They will then develop models and strategies for representing the division of a whole number by a unit fraction. The students will work on math practice standards as they work with a partner to distinguish correct logic or reasoning from that which is flawed, and explain flaws when they are present MAFS.5.NF.2.7: Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions. a. Interpret division of a unit fraction by a non-zero whole number, and compute such quotients. For example, create a story context for $(1 / 3) \div 4$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and

	division to explain that $(1 / 3) \div 4=1 / 12$ because $(1 / 12) \times 4=$ $1 / 3$. b. Interpret division of a whole number by a unit fraction, and compute such quotients. For example, create a story context for $4 \div(1 / 5)$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $4 \div(1 / 5)=20$ because $20 \times(1 / 5)=4$. c. Solve real world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions, e.g., by using visual fraction models and equations to represent the problem.

Measurement and Data

$\left.\begin{array}{|c|l|}\hline \text { Free Flight in Return for your Ranking! } & \begin{array}{l}\text { http://www.cpalms.org/Public/PreviewResourceLesson/Preview/72621 } \\ \text { This lesson asks students to rank four promotional deals that a travel } \\ \text { agency is running. Before they make their decision, the students have to } \\ \text { convert the duration of the trip to the same unit so that they can analyze } \\ \text { the data. }\end{array} \\ & \begin{array}{l}\text { MAFS.5.MD.1.1: Convert among different-sized standard measurement } \\ \text { units (i.e., km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec) within a given } \\ \text { measurement system (e.g., convert } 5 \text { cm to } 0.05 \mathrm{~m}) \text {, and use these } \\ \text { conversions in solving multi-step, real world problems. }\end{array} \\ \hline \text { April Showers Bring May Flowers - Line Plots } & \begin{array}{l}\text { http://www.cpalms.org/Public/PreviewResourceLesson/Preview/73039 } \\ \text { In this lesson, students will create a line plot that displays rainfall } \\ \text { data. They will use the data from the line plot to answer questions using } \\ \text { addition, subtraction, multiplication, and division of fractions. }\end{array} \\ \hline \text { MAFS.5.MD.2.2: Make a line plot to display a data set of measurements }\end{array}\right\}$

	b. A solid figure which can be packed without gaps or overlaps using n unit cubes is said to have a volume of n cubic units.
Shoe Closet MEA	http://www.cpalms.org/Public/PreviewResourceLesson/Preview/32290
	In this open-ended problem, students will work in teams to determine a procedure for ranking shoe closets for a company to purchase. Students will need to calculate the cubic feet of space for the closet, make decisions based on a table of data, and write a letter to the client providing evidence for their decisions.
	MAFS.5.MD.1.1: Convert among different-sized standard measurement units (i.e., km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec) within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real world problems.
	MAFS.5.MD.3.5: Relate volume to the operations of multiplication and addition and solve real world and mathematical problems involving volume.
	a. Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the

	base. Represent threefold whole-number products as volumes, e.g., to represent the associative property of multiplication. b. Apply the formulas $\mathrm{V}=\mathrm{l} \times \mathrm{w} \times \mathrm{h}$ and $\mathrm{V}=\mathrm{B} \times \mathrm{h}$ for rectangular prisms to find volumes of right rectangular prisms with wholenumber edge lengths in the context of solving real world and mathematical problems. c. Recognize volume as additive. Find volumes of solid figures composed of two non-overlapping right rectangular prisms by adding the volumes of the non-overlapping parts, applying this technique to solve real world problems.

Geometry

Design A Town Coordinates	http://www.cpalms.org/Public/PreviewResourceLesson/Preview/ 44987 Students will learn how to plot coordinates on the x and y -axis in the first quadrant. Students will start with plotting and creating simple shapes and progress through more complex shapes. The wrap up lesson will have the students plot and create their own town. MAFS.5.G.1.1: Use a pair of perpendicular number lines, called axes, to define a coordinate system, with the intersection of the lines (the origin) arranged to coincide with the 0 on each line and a given point in the plane located by using an ordered pair of numbers, called its coordinates. Understand that the first number indicates how far to travel from the origin in the direction of one axis, and the second number indicates how far to travel in the direction of the second axis, with the convention that the names of the two axes and the coordinates correspond (e.g., x -axis and x -coordinate, y -axis and y -coordinate).
Did you slow the flow, Joe?	http://www.cpalms.org/Public/PreviewResourceLesson/Preview/ $\underline{76426}$ Students will identify the effects of friction on the falling rates of an object in different liquids using speed calculation. With these calculations, the students will synthesize a cause/effect statement from the results comparing thickness (viscosity) of the liquid and the speed on a falling object.

Map It Out!!	MAFS.5.G.1.2: Represent real world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation.
http://www.cpalms.org/Public/PreviewResourceLesson/Preview/	
$\underline{46616}$	
In this lesson, students will use real life maps and apply their	
knowledge of coordinates (ordered pairs) in order to identify and	
name specific locations on a map and explain the relevance to	
their life.	
$\underline{\text { MAFS.5.G.1.2: Represent real world and mathematical }}$problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation.	
Bridge to Perfection	$\underline{\text { http://www.cpalms.org/Public/PreviewResourceLesson/Preview/ }}$48105 During this activity, students will read a book about the Brooklyn Bridge. After whole class discussion, children will explore different types of bridges and data, in order to decipher which bridge is the strongest. The students will work collaboratively in groups with assigned student roles. Students

\(\left.$$
\begin{array}{|c|l|}\hline & \begin{array}{l}\text { will utilize Higher Order thinking to create a solution. The } \\
\text { culminating activity is a presentation of solution to whole class. } \\
\text { MAFS.5.G.2.3: Understand that attributes belonging to a }\end{array}
$$

category of two-dimensional figures also belong to all

subcategories of that category.\end{array}\right\}\)| $\underline{\underline{\text { http://www.cpalms.org/Public/PreviewResourceLesson/Preview/ }}}$ |
| :--- |
| "Where in the Venn are the Quadrilaterals? |
| helps the student to develop a better understanding of classifying |
| two-dimensional figures in a hierarchy based on properties. |
| $\underline{\text { MAFS.5.G.2.4: Classify and organize two-dimensional figures }}$into Venn diagrams based on the attributes of the figures. |

Supply List

Suggested class supplies for each student

Math Notebook/Journal
Math Folder
Scissors
Construction paper
Colored pencils
Pencils
Index cards
Place value charts thru hundredths
Rulers

Operations and Algebraic Thinking

(class set) place value blocks
cm graph paper

Number and Operations in Base Ten

(class set) place value blocks place value charts
dimes, pennies to relate to decimal value

Numbers and Operations - Fractions

(class set) fraction bars
(class set) fraction circles
(class set) pattern blocks
(class set) colored tiles
inch graph paper for class use
cm graph paper

Measurement and Data

(12) meter/yard sticks rectangular prism (i.e. cereal box)
(class set) cm cubes
cm graph paper

Geometry

(class set) tan grams
(class set) two colored square tiles
(class set) pattern blocks
(per 2-3 students) 2-D shapes
cm graph paper

[^0]: In Grade 5, instructional time should focus on three critical areas: (1) developing fluency with addition and subtraction of fractions, and developing understanding of the multiplication of fractions and of division of fractions in limited cases (unit fractions divided by whole numbers and whole numbers divided by unit fractions); (2) extending division to 2-digit divisors, integrating decimal fractions into the place value system and developing understanding of operations with decimals to hundredths, and developing fluency with whole number and decimal operations; and (3) developing understanding of volume.

 Cluster 1: Write and interpret numerical expressions Cluster 2: Analyze patterns and relationships

 ## Parent Resources

 ## Bowling for Numbers

 http://www.cpalms.org/Public/PreviewResourceUpload/Preview/43076
 Seeing is Believing
 http://www.cpalms.org/Public/PreviewResourceUpload/Preview/43074
 Video Game Score
 http://www.cpalms.org/Public/PreviewResourceUpload/Preview/43072

