Algebra 1 Instructional Toolkit

The Algebra 1 Instructional Toolkit is intended to assist teachers with planning instruction aligned to the Florida Standards. This toolkit is not intended to replace your district's curriculum, but rather it serves to support the teaching and learning of the Algebra 1 Florida Standards. This toolkit includes a breakdown of information related to the Algebra 1 End-of-Course (EOC) Assessment, CPALMS and Florida Students, the Algebra 1 Florida Standards, and standards aligned resources.

Algebra 1 End-of-Course Assessment

This section highlights some key information related to the Algebra 1 EOC that can be found on the <u>FSA Portal</u>. These items include the Test Design Summary and Blueprint, Test Item Specifications and EOC Practice Tests.

Test Design Summary and Blueprint

The Algebra 1 EOC standards can be broken down into three major reporting categories as assessed on the Algebra 1 EOC with a corresponding weight. Within each reporting category are multiple domains and standards assessed. It is important to note that standards within the <u>Number & Quantity: Quantities</u> domain are assessed throughout the Algebra 1 EOC. This information can also be found on page 7 of the <u>Test Design Summary and Blueprint</u>.

- Algebra and Modeling (41%)
 - o Arithmetic with Polynomials & Rational Expressions
 - o <u>Creating Equations</u>
 - o <u>Reasoning with Equations and Inequalities</u>
 - Seeing Structure in Expressions
- Functions and Modeling (40%)
 - o <u>Building Functions</u>
 - o Interpreting Functions
 - o Linear, Quadratic, & Exponential Models
- Statistics & The Number System (19%)
 - o The Real Number System
 - o Interpreting Categorical & Quantitative Data

Test Item Specifications

The Algebra 1 <u>Test Item Specification Document</u> indicates the alignment of items with the Florida Standards. Assessment limits are included in the specifications, which define the range of content knowledge in the assessment items for the standard. In addition to limits, each item specification identifies whether or not that item could appear in the calculator allowed test session or no calculator allowed test session. Each standard in this toolkit lists the corresponding page number in the specifications document along with any assessment limits and allowable calculator use. Due to standards within the Number and Quantity domain assessed throughout the Algebra 1 EOC, there are no test item specifications for these standards.

Practice Tests

<u>Practice Tests</u> are available for students to become familiar with the various item types that may be used on the Algebra 1 EOC. Within the Test Item Specification document, page 44, is a chart aligning standards to each item type and item number on the Computer-Based Practice Test. Each Computer-Based Practice Test is provided with

an <u>answer key</u>. It is important to note that students are not permitted to use a calculator of any kind on Session 1 of the Algebra 1 EOC. Students will be permitted a scientific calculator on all other sessions. For information regarding usage of calculators, please see the <u>Calculator and Reference Sheet Policy</u> page on the FSA portal.

CPALMS: Official Source of Florida Standards

This section features information and tools that are found on <u>CPALMS</u>.

Algebra 1 Course Description

The <u>Algebra 1 Course Description</u> provides an overview for the course with standards aligned resources for educators, students, and parents.

Mathematics Formative Assessment System (MFAS)

One resource available on CPALMS that has been designed specifically for mathematics instruction is the <u>Mathematics Formative Assessment System (MFAS</u>). The system includes a task or problem that teachers can implement with their students. It also includes various levels of rubrics that help the teacher interpret students' responses. In addition to using the MFAS tasks as formative assessments for students, these tasks can be used by teachers to plan lessons that are closely aligned to the standards.

Model Eliciting Activity (MEAs)

<u>Model Eliciting Activities (MEAs)</u> are open-ended, interdisciplinary problem-solving activities that are meant to reveal students' thinking about the concepts embedded in these realistic activities. Students will work in teams to apply their knowledge of mathematics and science while considering constraints and tradeoffs. Each MEA is aligned to at least two subject areas, including mathematics, English language arts and/or literacy in the content areas, and science.

Mathematical Practices

The Mathematical Practices are habits of mind that describe varieties of expertise that mathematics educators at all levels should seek to develop in their students. The Mathematical Practices should be infused during the course and will be assessed throughout the Algebra 1 EOC. More information about each Mathematical Practice can be found by clicking on the links below.

MAFS.K12.MP.1.1 Make sense of problems and persevere in solving them.

MAFS.K12.MP.2.1 Reason abstractly and quantitatively.

MAFS.K12.MP.3.1 Construct viable arguments and critique the reasoning of others.

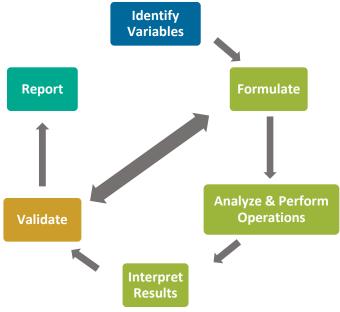
MAFS.K12.MP.4.1 Model with mathematics.

MAFS.K12.MP.5.1 Use appropriate tools strategically.

MAFS.K12.MP.6.1 Attend to precision.

MAFS.K12.MP.7.1 Look for and make use of structure.

MAFS.K12.MP.8.1 Look for and express regularity in repeated reasoning.


Depth of Knowledge

Florida has adopted Webb's four-level Depth of Knowledge (DOK) model of content complexity as a means of classifying the cognitive demand presented by the Florida standards. It is important to distinguish between the DOK rating for a given standard and the possible DOK ratings for assessment items designed to address the standard. This is particularly important for assessment purposes, since 50% or more of assessment items associated with a given standard should meet or exceed the DOK level of the standard. The DOK Levels are

identified for each standard throughout this document. Please visit the <u>CPALMS Content Complexity</u> page for more information about the DOK complexity for standards. For more information about the DOK complexity for mathematics assessments, please visit page 9 of the mathematics <u>Test Design Summary and Blueprint</u> on the <u>FSA</u> <u>Portal</u>.

Math Modeling Standards

Standards that are marked with a star symbol (\bigstar) are standards within the math modeling conceptual category. Modeling standards are best interpreted in relation to other standards and within other content areas. The basic modeling cycle involves (1) identifying variables in the situation and selecting those that represent essential features, (2) formulating a model by creating and selecting geometric, graphical, tabular, algebraic, or statistical representations that describe relationships between the variables, (3) analyzing and performing operations on these relationships to draw conclusions, (4) interpreting the results of the mathematics in terms of the original situation, (5) validating the conclusions by comparing them with the situation, and then either improving the model or, if it is acceptable, (6) reporting on the conclusions and the reasoning behind them. Choices, assumptions, and approximations are present throughout this cycle. See figure below that visualizes the modeling cycle.

Florida Students

Resources specifically designed with students in mind are available on <u>Florida Students</u>. Florida Students is an interactive site that provides educational resources and student tutorials aligned to the Florida Standards. This site should not be used as a lesson guide, but rather a tool to help students obtain mastery in various mathematical concepts.

Florida Students Achieve

Resources specifically designed with parents in mind are available on <u>Florida Students Achieve</u>. This site provides parents with information on what their student should be learning at each grade level so that may support their child's education.

Algebra 1 Florida Standards

This section includes a breakdown of each standard by domain and cluster. Standards should not be taught in the order below. To do so would strip the coherence of the mathematical ideas and miss opportunity to enhance the major work of the grade with the supporting clusters and/or standards. In addition to the breakdown, each standard has the corresponding DOK Level, clarifications and assessment limits with page number in the Algebra 1 <u>Test Item Specifications</u>, and aligned resources.

Domain: Number & Quantity-Quantities

Cluster 1 (Supporting): <u>Reason quantitatively and use units to solve problems.</u>

Standard Code	Standard	Clarification(s) & Assessment Limit(s)	Resources
MAFS.912.N-	Use units as a way to understand	N/A	<u>MFAS</u> :
<u>Q.1.1</u>	problems and to guide the solution of		<u>Aquarium</u>
	multi-step problems; choose and	Item assessed with and/or without	<u>Visitors</u>
	interpret units consistently in	calculator.	
	formulas; choose and interpret the		<u>Problem-</u>
	scale and the origin in graphs and		Solving Task:
	data displays. ★		Weed Killer
	Content Complexity: Level 2: Basic		
	Application of Skills & Concepts		
MAFS.912.N-	Define appropriate quantities for the	N/A	MFAS: Rain
<u>Q.1.2</u>	purpose of descriptive modeling. ★		<u>Damage</u>
		Item assessed with and/or without	Model
	Content Complexity: Level 2: Basic	calculator.	
	Application of Skills & Concepts		<u>Lesson</u> :
			Testing water
			for drinking
			<u>purposes</u>
MAFS.912.N-	Choose a level of accuracy	N/A	<u>MFAS</u> : <u>Density</u>
<u>Q.1.3</u>	appropriate to limitations on		
	measurement when reporting	Item assessed with and/or without	<u>Problem-</u>
	quantities. ★	calculator.	Solving Task:
			Calories in a
	Content Complexity: Level 2: Basic		Sports Drink
	Application of Skills & Concepts		

Domain: Number & Quantity-The Real Number System

Cluster 1 (Major): *Extend the properties of exponents to rational exponents.*

Standard Code	Standard	Clarification(s) & Assessment Limit(s)	Resources
MAFS.912.N-	Explain how the definition of the	Page 38; Students will use the	MFAS:
<u>RN.1.1</u>	meaning of rational exponents	properties of exponents to rewrite a	<u>Rational</u>
	follows from extending the	radical expression as an expression	Exponents
	properties of integer exponents to	with a rational exponent. Students will	and Roots
	those values, allowing for a notation	use the properties of exponents to	
	for radicals in terms of rational	rewrite an expression with a rational	

	exponents. For example, we define $5^{\frac{1}{3}}$ to be the cube root of 5 because we want $(5^{\frac{1}{3}})^3 = 5^{(\frac{1}{3})^3}$ to hold, so $(5^{\frac{1}{3}})^3$ must equal 5. <u>Content Complexity</u> : Level 2: Basic Application of Skills & Concepts	exponent as a radical expression. Students will apply the properties of operations of integer exponents to expressions with rational exponents. Students will apply the properties of operations of integer exponents to radical expressions. Expressions should contain no more than three variables.	Problem- Solving Task: Extending the Definitions of Exponents
		Item assessed with and/or without calculator.	
MAFS.912.N- RN.1.2	Rewrite expressions involving radicals and rational exponents using the properties of exponents. <u>Content Complexity</u> : Level 1: Recall	Page 38; Students will use the properties of exponents to rewrite a radical expression as an expression with a rational exponent. Students will use the properties of exponents to rewrite an expression with a rational exponent as a radical expression. Students will apply the properties of operations of integer exponents to expressions with rational exponents. Students will apply the properties of operations of integer exponents to radical expressions. Expressions should contain no more than three variables. Item assessed with and/or without calculator.	MFAS: Rational Exponents Lesson: Simply Radical!

Cluster 2 (Additional): Use properties of rational and irrational numbers.

Standard Code	Standard	Clarification(s) & Assessment Limit(s)	Resources
MAFS.912.N-	Explain why the sum or product of	Page 38; Students will write algebraic	MFAS:
<u>RN.2.3</u>	two rational numbers is rational; that	proofs that show that a sum or	Product of
	the sum of a rational number and an	product of two rational numbers is	Non-Zero
	irrational number is irrational; and	rational; that the sum of a rational	rational and
	that the product of a nonzero	number and an irrational number is	Irrational
	rational number and an irrational	irrational; and that the product of a	<u>Numbers</u>
	number is irrational.	nonzero rational number and an	
		irrational number is irrational.	Problem-
	Content Complexity: Level 2: Basic	Expressions should contain no more	Solving Task:
	Application of Skills & Concepts	than three variables.	Operations
			with rational
		Item assessed with and/or without	& Irrational
		calculator.	<u>Numbers</u>

Domain: Algebra-Arithmetic with Polynomials & Rational Expressions

Cluster 1 (Major): Perform arithmetic operations on polynomials.

Standard Code	Standard	Clarification(s) & Assessment Limit(s)	Resources
MAFS.912.A-	Understand that polynomials form a	Page 11; Items set in a real-world	MFAS:
<u>APR.1.1</u>	system analogous to the integers,	context should not result in a nonreal	Multiplying
	namely, they are closed under the	answer if the polynomial is used to	Polynomials
	operations of addition, subtraction,	solve for the unknown. In items that	
	and multiplication; add, subtract, and	require addition and subtraction,	<u>Lesson</u> :
	multiply polynomials.	polynomials are limited to monomials,	<u>Wonka's</u>
		binomials, and trinomials. The	Golden Ticket!
	Content Complexity: Level 1: Recall	simplified polynomial should contain	
	· · · · · · · · · · · · · · · · · · ·	no more than six terms. Items	
		requiring multiplication of polynomials	
		are limited to a product of: two	
		monomials, a monomial and a	
		binomial, a monomial and a trinomial,	
		two binomials, and a binomial and a	
		trinomial.	
		Item assessed with and/or without	
		calculator.	

Cluster 2 (Supporting): Understand the relationship between zeros and factors of polynomials.

Standard Code	Standard	Clarification(s) & Assessment Limit(s)	Resources
MAFS.912.A-	Identify zeros of polynomials when	Pages 31-33; Students will find zeros	<u>MFAS</u> : <u>Use</u>
<u>APR.2.3</u>	suitable factorizations are available,	of a polynomial function when the	Zeros to
	and use the zeros to construct a	polynomial is in factored form.	<u>Graph</u>
	rough graph of the function defined	Students will create a rough graph of a	
	by the polynomial.	polynomial function in factored form	Lesson:
		by examining the zeros of the	Representing
		function. Students will use the x-	Polynomials
	Content Complexity: Level 1: Recall	intercepts of a polynomial function	
		and end behavior to graph the	
		function. The leading coefficient	
		should be an integer and the	
		polynomial's degree is restricted to 3	
		or 4. The polynomial function should	
		not have a zero with multiplicity. The	
		polynomial should be given in factored	
		form.	
		Item assessed with and/or without	
		calculator.	

Domain: Algebra-Creating Equations

Cluster 1 (Major): <u>Create equations that describe numbers or relationships.</u>

Standard Code	Standard	Clarification(s) & Assessment Limit(s)	Resources
MAFS.912.A-	Create equations and inequalities in	Pages 12-13; Students will write an	MFAS: State
<u>CED.1.1</u>	one variable and use them to solve	equation in one variable that	<u>Fair</u>
	problems. Include equations arising	represents a real-world context.	
	from linear and quadratic functions,	Students will write an inequality in	<u>Lesson</u> : <u>The</u>
	and simple rational, absolute, and	one variable that represents a real-	<u>Yo-Yo</u>
	exponential functions. 📩	world context. In items that require	Problem
		the student to write an equation,	
	Content Complexity: Level 2: Basic	equations are limited to exponential	
	Application of Skills & Concepts	functions with one translation, linear	
		functions, or quadratic functions.	
		Items may include equations or	
		inequalities that contain variables on both sides. Items may include	
		compound inequalities. In items that	
		require the student to write an	
		exponential function given ordered	
		pairs, at least one pair of consecutive	
		values must be given. In items that	
		require the student to write or solve	
		an inequality, variables are restricted	
		to an exponent of one.	
		'	
		Item assessed with and/or without	
		calculator.	
MAFS.912.A-	Create equations in two or more	Pages 14-15; Students will identify the	MFAS: Tech
<u>CED.1.2</u>	variables to represent relationships	quantities in a real-world situation	Repairs Graph
	between quantities; graph equations	that should be represented by distinct	
	on coordinate axes with labels and	variables. Students will write a system	<u>Problem-</u>
	scales. ★	of equations given a real-world	Solving Task:
		situation. Students will graph a system	<u>Cash Box</u>
	Content Complexity: Level 2: Basic	of equations that represents a real-	
	Application of Skills & Concepts	world context using appropriate axis	
		labels and scales. Items that require the student to write a system of	
		equations using a real-world context	
		are limited to a system of 2 x 2 linear	
		equations.	
		Item assessed with and/or without	
		calculator.	
MAFS.912.A-	Represent constraints by equations	Page 16; Students will write	MAFS: Sugar
CED.1.3	or inequalities, and by systems of	constraints for a real-world context	and Protein
	equations and/or inequalities, and	using equations, inequalities, a system	
	interpret solutions as viable or non-	of equations, or a system of	<u>Lesson</u> :
	viable options in a modeling context.	inequalities. Students will interpret	Feasible or
	For example, represent inequalities	the solution of a real-world context as	Non-Feasible?

			1
	describing nutritional and cost	viable or not viable. In items that	
	constraints on combinations of	require the student to write an	
	different foods. ★	equation as a constraint, the equation	
		may be a linear function. In items that	
	Content Complexity: Level 3:	require the student to write a system	
	Strategic Thinking & Complex	of equations to represent a constraint,	
	Reasoning	the system is limited to two variables.	
		In items that require the student to	
		write a system of inequalities to	
		represent a constraint, the system is	
		limited to two variables.	
		Item assessed with and/or without	
		calculator.	
MAFS.912.A-	Rearrange formulas to highlight a	Pages 12-13; Students will solve multi-	MAFS:
CED.1.4	quantity of interest, using the same	variable formulas or literal equations	Rewriting
<u>CLD.1.4</u>		for a specific variable. Students will	
	reasoning as in solving equations. For		Equations
	example, rearrange Ohm's law V = IR	solve formulas and equations with	
	to highlight resistance R. 📩	coefficients represented by letters.	Lesson: Don't
		Items that involve formulas should not	Take it so
	Content Complexity: Level 1: Recall	include overused contexts such as	<u>Literal</u>
		Fahrenheit/Celsius or three	
		-dimensional geometry formulas. In	
		items that require the student to solve	
		literal equations and formulas, a linear	
		term should be the term of interest.	
		Items should not require more than	
		four procedural steps to isolate the	
		variable of interest. Items may require	
		the student to recognize equivalent	
		expressions.	
		- I	
		Item assessed with and/or without	
		calculator.	

Domain: Algebra-Reasoning with Equations & Inequalities

Cluster 1 (*Major*): <u>Understand solving equations as a process of reasoning and explain the reasoning.</u>

Standard Code	Standard	Clarification(s) & Assessment Limit(s)	Resources
MAFS.912.A-	Explain each step in solving a simple	Pages 17; Students will complete an	MFAS:
<u>REI.1.1</u>	equation as following from the	algebraic proof of solving a linear	Equation Logic
	equality of numbers asserted at the	equation. Students will construct a	
	previous step, starting from the	viable argument to justify a solution	<u>Original</u>
	assumption that the original equation	method. Items will not require the	<u>Tutorial</u> :
	has a solution. Construct a viable	student to recall names of properties	<u>Justifiable</u>
	argument to justify a solution	from memory.	<u>Steps</u>
	method.		
		Item assessed with and/or without	
		calculator.	

Content Complexity: Level 3:	
Strategic Thinking & Complex	
Reasoning	

Standard Code	Standard	Clarification(s) & Assessment Limit(s)	Resources
MAFS.912.A-	Solve linear equations and	Page 12-13; Students will solve a	MFAS: Solving
REI.2.3	inequalities in one variable, including	linear equation. Students will solve a	Multistep
<u></u>	equations with coefficients	linear inequality. Items may include	Inequality
	represented by letters.	equations or inequalities that contain	<u></u>
		variables on both sides. Items may	Tutorial:
	Content Complexity: Level 2: Basic	include compound inequalities.	Linear
	Application of Skills & Concepts		Inequalities
	Application of Skins & concepts	Item assessed with and/or without	
		calculator.	
MAFS.912.A-	Solve quadratic equations in one	Pages 18-19; Students will rewrite a	MFAS: Which
<u>REI.2.4</u>	variable.	quadratic equation in vertex form by	Strategy?
	a) Use the method of completing	completing the square. Students will	
	the square to transform any	use the vertex form of a quadratic	<u>Original</u>
	quadratic equation in x into an	equation to complete steps in the	<u>Tutorial</u> :
	equation of the form $(x - p)^2 = q$	derivation of the quadratic formula.	<u>Solving</u>
	that has the same solutions.	Students will solve a simple quadratic	<u>Quadratic</u>
	Derive the quadratic formula	equation by inspection or by taking	Equations by
	from this form.	square roots. Students will solve a	<u>Completing</u>
	b) Solve quadratic equations by	quadratic equation by choosing an	the square
	inspection (e.g., for x ² = 49),	appropriate method. Students will	
	taking square roots, completing	validate why taking the square root of	
	the square, the quadratic formula	both sides when solving a quadratic	
	and factoring, as appropriate to	equation will yield two solutions.	
	the initial form of the equation.	Students will recognize that the	
	Recognize when the quadratic	quadratic formula can be used to find	
	formula gives complex solutions	complex solutions. Items may require	
	and write them as $a \pm bi$ for real	the student to recognize that a	
	numbers a and b.	solution is nonreal but should not	
	Contant Complexity: Lovel 2: Pasis	require the student to find a nonreal solution.	
	<u>Content Complexity</u> : Level 2: Basic Application of Skills & Concepts		
		Item assessed with and/or without	
		calculator.	

Cluster 2 (Major): Solve equations and inequalities in one variable.

Cluster 3 (Additional): Solve systems of equations.

Standard Code	Standard	Clarification(s) & Assessment Limit(s)	Resources
MAFS.912.A-	Prove that, given a system of two	Pages 14-15; Students will provide	MFAS: Solving
REI.3.5	equations in two variables, replacing	steps in an algebraic proof that shows	<u>Systems</u>
	one equation by the sum of that	one equation being replaced with	
	equation and a multiple of the other	another to find a solution for a system	Lesson:
		of equations. Students will identify	Changes are

	produces a systems with the same solutions.	systems whose solutions would be the same through examination of the coefficients.	Coming! But Does it Really Matter?
	<u>Content Complexity</u> : Level 3: Strategic Thinking & Complex Reasoning	Item assessed with and/or without calculator.	
<u>MAFS.912.A-</u> <u>REI.3.6</u>	Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables. <u>Content Complexity</u> : Level 1: Recall	Pages 14-15; Students will graph a system of equations that represents a real-world context using appropriate axis labels and scale. Students will solve systems of linear equations. Items that require the student to solve a system of equations are limited to a system of 2 x 2 linear equations. Items that require the student to graph a system of equations or inequalities to find the solution are limited to a 2 x 2 system. Item assessed with and/or without calculator.	MFAS: Solving a System of Equations Lesson: Systems of Linear Round Tables

Cluster 4 (Major): Represent and solve equations and inequalities graphically.

Standard Code	Standard	Clarification(s) & Assessment Limit(s)	Resources
MAFS.912.A-	Understand that the graph of an	Pages 20-21; In items where a	MFAS: Case in
<u>REI.4.10</u>	equation in two variables is the set of	function is represented by an	<u>Point</u>
	all its solutions plotted in the	equation, the function may be an	
	coordinate plane, often forming a	exponential function with no more	<u>Original</u>
	curve (which could be a line).	than one translation, a linear function,	<u>Tutorial</u> :
		or a quadratic function. In items	<u>Finding</u>
	Content Complexity: Level 1: Recall	where a function is represented by a	Solutions on a
		graph or table, the function may be	<u>Graph</u>
		any continuous function.	
		Item assessed with and/or without	
		calculator.	
<u>MAFS.912.A-</u>	Explain why the x-coordinates of the	Pages 20-21; Students will find a	MFAS: Using
<u>REI.4.11</u>	points where the graphs of the	solution or an approximate solution	<u>Tables</u>
	equations $y = f(x)$ and $y = g(x)$	for $f(x) = g(x)$ using a graph. Students	
	intersect are the solutions of the	will find a solution or an approximate	<u>Original</u>
	equation f(x) = g(x); find the solutions	solution for $f(x) = g(x)$ using a table of	<u>Tutorial</u> :
	approximately, e.g., using technology	values. Students will find a solution or	Solving an
	to graph the functions, make tables	an approximate solution for $f(x) = g(x)$	Equation
	of values, or find successive	using successive approximations that	Using a Graph
	approximations. Include cases where	give the solution to a given place	
	f(x) and/or g(x) are linear,	value. Students will justify why the	
	polynomial, rational, absolute value,	intersection of two functions is a	
		solution to $f(x) = g(x)$. Students will	

	exponential, and logarithmic functions. ★	verify if a set of ordered pairs is a solution of a function.	
	<u>Content Complexity</u> : Level 2: Basic Application of Skills & Concepts	Item assessed with and/or without calculator.	
<u>MAFS.912.A-</u> <u>REI.4.12</u>	Graph the solutions to a linear inequality in two variables as a half- plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.	Pages 14-15; Students will identify the graph that represents a linear inequality. Students will graph a linear inequality. Students will identify the solution set to a system of inequalities. Students will identify ordered pairs that are in the solution set of a system of inequalities. Students will graph the solution set to	MFAS: Graph a System of Inequalities Lesson: Solving Systems of Inequalities
	<u>Content Complexity</u> : Level 2: Basic Application of Skills & Concepts	a system of inequalities. Item assessed with and/or without calculator.	

Domain: Algebra-Seeing Structure in Expressions

Cluster 1 (Major): Interpret the structure of expressions.

Standard Code	Standard	Clarification(s) & Assessment Limit(s)	Resources
MAFS.912.A-	Interpret expressions that represent	Pages 22-23; Students will use	MFAS:
<u>SSE.1.1</u>	a quantity in terms of its context. ★	equivalent forms of an exponential	Interpreting
	a) Interpret parts of an expression,	expression to interpret the	Basic Tax
	such as terms, factors, and	expression's terms, factors,	
	coefficients.	coefficients, or parts in terms of the	Lesson:
	b) Interpret complicated	real-world situation the expression	Dissecting an
	expressions by viewing one or	represents. Items should not ask the	Expression
	more of their parts as a single	student to interpret zeros, the vertex,	
	entity. <i>For example,</i>	or axis of symmetry when the	
	interpret $P(1+r)^n$ as the	quadratic expression is in the form ax^2	
	product of P and a factor not	+ <i>bx</i> + <i>c</i> (see F-IF.3.8). Exponential	
	depending on P.	expressions are limited to simple	
		growth and decay. If the number <i>e</i> is	
	Content Complexity: Level 2: Basic	used then its approximate value	
	Application of Skills & Concepts	should be given in the stem. Quadratic	
		expressions should be univariate.	
		Item assessed with and/or without	
		calculator.	
MAFS.912.A-	Use the structure of an expression to	Pages 22-23; Students will rewrite	MFAS:
<u>SSE.1.2</u>	identify ways to rewrite it. For	algebraic expressions in different	<u>Quadratic</u>
	example, see $x^4 - y^4$ as $(x^2)^2 - (y^2)^2$,	equivalent forms by recognizing the	Expressions
	thus recognizing it as a difference of	expression's structure. Students will	
	squares that can be factored as $(x^2 - 2)$	rewrite algebraic expressions in	Lesson: Using
	$y^{2}(x^{2} + y^{2}).$	different equivalent forms using	Algebra Tiles

		factoring techniques or simplifying	
Content Com	nplexity: Level 2: Basic	expressions. In items that require the	
Application of	of Skills & Concepts	student to write equivalent	
		expressions by factoring, the given	
		expression may have integral common	
		factors, be a difference of two squares	
		up to a degree of 4, be a quadratic, ax^2	
		+ <i>bx</i> + <i>c</i> , where <i>a</i> > 0 and <i>a</i> , <i>b</i> , and <i>c</i>	
		are integers, or be a polynomial of	
		four terms with a leading coefficient	
		of 1 and highest degree of 3.	
		Item assessed with and/or without	
		calculator.	

Cluster 2 (Supporting): Write expressions in equivalent forms to solve problems.

Standard Code	Standard	Clarification(s) & Assessment Limit(s)	Resources
MAFS.912.A-	Choose and produce an equivalent	Pages 22-23; Students will use	MFAS: College
<u>SSE.2.3</u>	form of an expression to reveal and	equivalent forms of a quadratic	<u>Costs</u>
	explain properties of the quantity	expression to interpret the	
	represented by the expression. ★	expression's terms, factors, zeros,	<u>Original</u>
	a) Factor a quadratic expression to	maximum, minimum, coefficients, or	<u>Tutorial</u> :
	reveal the zeros of the function it	parts in terms of the real-world	Finding the
	defines.	situation the expression represents. In	Zeros of
	b) Complete the square in a	items that require the student to	<u>Quadratic</u>
	quadratic expression to reveal	transform a quadratic equation to	Functions
	the maximum or minimum value	vertex form, <i>b/a</i> must be an even	
	of the function it defines.	integer. Exponential expressions are	
	<i>c)</i> Use the properties of exponents	limited to simple growth and decay. If	
	to transform expressions for	the number <i>e</i> is used then its	
	exponential functions. For	approximate value should be given in	
	example the expression 1.15^t can	the stem. Quadratic expressions	
	be rewritten as $\left(1.15^{rac{1}{12}} ight)^{12t}pprox$	should be univariate. Items should	
	$(1.012)^{12}$	only ask students to interpret the y-	
	$(1.012)^{12t}$ to reveal the	value of the vertex within a real-world	
	approximate equivalent monthly	context. Items should require the	
	interest rate if the annual rate is	student to choose how to rewrite the	
	15%.	expression.	
	<u>Content Complexity</u> : Level 2: Basic	Item assessed with and/or without	
	Application of Skills & Concepts	calculator.	

Domain: Functions-Building Functions

Standard Code	Standard	Clarification(s) & Assessment Limit(s)	Resources
Standard Code MAFS.912.F- BF.1.1	 Standard Write a function that describes a relationship between two quantities. ★ a) Determine an explicit expression, a recursive process, or steps for calculation from a context. b) Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model. c) Compose functions. For example, if T(y) is the temperature in the atmosphere as a function of height, and h(t) is the height of a weather balloon as a function of the weather balloon as a function 	Clarification(s) & Assessment Limit(s) Pages 35-36; Students will write an explicit function, define a recursive process, or complete a table of calculations that can be used to mathematically define a real-world context. Students will write a function that combines functions using arithmetic operations and relate the result to the context of the problem. Students will write a function to model a real-world context by composing functions and the information within the context. In items where the student must write a function using arithmetic operations or by composing functions, the student should have to generate the new function only. Item assessed with and/or without calculator.	ResourcesProblem- Solving Task: Crude Oil and Gas MileageMFAS: Furniture Purchase
	time, then T(h(t)) is the temperature at the location of		

Cluster 1 (Supporting): <u>Build a function that models a relationship between two quantities.</u>

Cluster 2 (Additional): <u>Build new functions from existing functions.</u>

Standard Code	Standard	Clarification(s) & Assessment Limit(s)	Resources
MAFS.912.F-	Identify the effect on the graph of	Pages 24-25; Students will determine	Lesson:
BF.2.3	replacing f(x) by f(x) + k, k f(x), f(kx),	the value of <i>k</i> when given a graph of	Functions,
	and f(x + k) for specific values of k	the function and its transformation.	Graphs, and
	(both positive and negative); find the	Students will identify differences and	Symmetry
	value of k given the graphs.	similarities between a function and its	<u>Oh My!</u>
	Experiment with cases and illustrate	transformation. Students will identify	
	an explanation of the effects on the	a graph of a function given a graph or	MFAS:
	graph using technology. Include	a table of a transformation and the	Comparing
	recognizing even and odd functions	type of transformation that is	Functions –
	from their graphs and algebraic	represented. Students will graph by	<u>Quadratic</u>
	expressions for them.	applying a given transformation to a	
		function. Students will identify	
	Content Complexity: Level 3:	ordered pairs of a transformed graph.	
	Strategic Thinking & Complex	Students will complete a table for a	
	Reasoning	transformed function. Functions	

represented algebraically are limited to linear, quadratic, or exponential. Functions represented using tables or graphs are not limited to linear, quadratic, or exponential. Functions
may be represented using tables or graphs. Functions may have closed domains. Functions may be discontinuous. Items should have a single transformation. Item assessed with and/or without calculator.

Domain: Functions-Interpreting Functions

Cluster 1 (Major): <u>Understand the concept of a function and use function notation</u>.

Standard Code	Standard	Clarification(s) & Assessment Limit(s)	Resources
MAFS.912.F-	Understand that a function from one	Pages 26-27; Students will use the	Lesson:
<u>IF.1.1</u>	set (called the domain) to another set	definition of a function to determine if	Functions:
	(called the range) assigns to each	a relationship is a function, given	Domain and
	element of the domain exactly one	tables, graphs, mapping diagrams, or	Range
	element of the range. If f is a function	sets of ordered pairs. Items may	
	and x is an element of its domain,	present relations in a variety of	<u>MFAS</u> :
	then f(x) denotes the output of f	formats, including sets of ordered	Identifying the
	corresponding to the input x. The	pairs, mapping diagrams, graphs, and	Graphs of a
	graph of f is the graph of the	input/output models.	<u>Function</u>
	equation $y = f(x)$.		
		Item assessed with and/or without	
	Content Complexity: Level 1: Recall	calculator.	
MAFS.912.F-	Use function notation, evaluate	Pages 26-27; Students will evaluate	MFAS: Cell
<u>IF.1.2</u>	functions for inputs in their domains,	functions that model a real-world	Phone Battery
	and interpret statements that use	context for inputs in the domain.	<u>Life</u>
	function notation in terms of a	Students will interpret the domain of a	
	context.	function within the real-world context	
		given. Students will interpret	
	Content Complexity: Level 2: Basic	statements that use function notation	
	Application of Skills & Concepts	within the real-world context given.	
		Items that require the student to find	
		a value given a function, the following	
		function types are allowed: quadratic,	
		polynomials whose degrees are no	
		higher than 6, square root, cube root,	
		absolute value, exponential except for	
		base <i>e</i> , and simple rational.	
		Item assessed with and/or without	
		calculator.	

MAFS.912.F-	Recognize that sequences are	Pages 35-36; Students will write a	MFAS:
<u>IF.1.3</u>	functions, sometimes defined	recursive definition for a sequence	Recursive
	recursively, whose domain is a subset	that is presented as a sequence, a	<u>Sequences</u>
	of the integers. For example, the	graph, or a table.	
	Fibonacci sequence is defined		<u>Text</u>
	recursively by $f(0) = f(1) = 1$, $f(n+1) =$	Item assessed with and/or without	Resource:
	f(n) + f(n-1) for n ≥ 1.	calculator.	Patterns and
			<u>Structure</u>
	Content Complexity: Level 2: Basic		
	Application of Skills & Concepts		

Cluster 2 (Major): Interpret functions that arise in applications in terms of the context.

Standard Code	Standard	Clarification(s) & Assessment Limit(s)	Resources
MAFS.912.F-	For a function that models a	Pages 28-29; Students will determine	MFAS: Surf's
<u>IF.2.4</u>	relationship between two quantities,	and relate the key features of a	<u>Up</u>
	interpret key features of graphs and	function within a real-world context	
	tables in terms of the quantities, and	by examining the function's table.	Problem-
	sketch graphs showing key features	Students will determine and relate the	Solving Task:
	given a verbal description of the	key features of a function within a	Warming and
	relationship. Key features include:	real-world context by examining the	<u>Cooling</u>
	intercepts; intervals where the	function's graph. Students will use a	
	function is increasing, decreasing,	given verbal description of the	
	positive, or negative; relative	relationship between two quantities	
	maximums and minimums;	to label key features of a graph of a	
	symmetries; end behavior; and	function that model the relationship.	
	periodicity. 📩	Functions may be represented using	
		tables, graphs or verbally. Functions	
		represented using these	
	Content Complexity: Level 2: Basic	representations are not limited to	
	Application of Skills & Concepts	linear, quadratic or exponential.	
		Functions may have closed domains.	
		Functions may be discontinuous.	
		Items may not require the student to	
		use or know interval notation. Key	
		features include x-intercepts, y-	
		intercepts; intervals where the	
		function is increasing, decreasing,	
		positive, or negative; relative	
		maximums and minimums;	
		symmetries; and end behavior.	
		Item assessed with and/or without	
		calculator.	
MAFS.912.F-	Relate the domain of a function to its	Pages 26-27; Students will determine	MFAS:
<u>IF.2.5</u>	graph and, where applicable, to the	the feasible domain of a function that	Describe the
	quantitative relationship it describes.	models a real-world context. Items	<u>Domain</u>
	<i>For example, if the function h(n) gives</i>	may not require the student to use or	
	the number of person-hours it takes	know interval notation. In items	
	to assemble engines in a factory, then	requiring the student to find the	

			I
	the positive integers would be an	domain from graphs, relationships	
	appropriate domain for the function.	may be on a closed or open interval. In	
	<u>*</u>	items requiring the student to find	
		domain from graphs, relationships	
	Content Complexity: Level 2: Basic	may be discontinuous.	
	Application of Skills & Concepts		
		Item assessed with and/or without	
		calculator.	
MAFS.912.F-	Calculate and interpret the average	Page 30; Students will calculate the	<u>MFAS</u> : <u>Air</u>
<u>IF.2.6</u>	rate of change of a function	average rate of change of a	<u>Cannon</u>
	(presented symbolically or as a table)	continuous function that is	
	over a specified interval. Estimate the	represented algebraically, in a table of	Original
	rate of change from a graph. ★	values, on a graph, or as a set of data.	<u>Tutorial</u> :
		Students will interpret the average	Changing
	Content Complexity: Level 2: Basic	rate of change of a continuous	<u>Rates</u>
	Application of Skills & Concepts	function that is represented	
		algebraically, in a table of values, on a	
		graph, or as a set of data with a real-	
		world context. Items requiring the	
		student to calculate the rate of change	
		will give a specified interval that is	
		both continuous and differentiable.	
		Items should not require the student	
		to find an equation of a line. Item	
		should not be linear.	
		Item assessed with and/or without	
		calculator.	

Cluster 3 (Supporting): <u>Analyze functions using different representations</u>.

Standard Code	Standard	Clarification(s) & Assessment Limit(s)	Resources
MAFS.912.F-	Graph functions expressed	Pages 31-33; Items are limited to	MFAS:
<u>IF.3.7</u>	symbolically and show key features	linear, quadratic, and exponential.	Graphing a
	of the graph, by hand in simple cases	Students will graph a linear, quadratic,	Step Function
	and using technology for more	or exponential function using key	
	complicated cases. ★	features. Students will identify and	Lesson:
	a) Graph linear and quadratic	interpret key features of a graph	<u>Graphing</u>
	functions and show intercepts,	within the real-world context that the	<u>Quadratic</u>
	maxima, and minima.	function represents. For F-IF.3.7a,	Equations
	b) Graph square root, cube root,	quadratic functions that are given in	
	and piecewise-defined functions,	the form $y = ax^2 + bx + c$, a, b, and c	
	including step functions and	must be integers. Quadratic functions	
	absolute value functions.	given in vertex form $y = a(x - h)^2 + k$, a ,	
	c) Graph polynomial functions,	h, and k must be integers. Quadratic	
	identifying zeros when suitable	functions given in other forms should	
	factorizations are available, and	be able to be rewritten and adhere to	
	showing end behavior.	one of the two previous forms. For F-	
	d) Graph rational functions,	IF.3.7e, exponential functions are	
		limited to simple exponential growth	

			I
	identifying zeros and asymptotes	and decay functions and to	
	when suitable factorizations are	exponential functions with one	
	available, and showing end	translation. Base <i>e</i> should not be used.	
	behavior.		
	e) Graph exponential and	Item assessed with and/or without	
	logarithmic functions, showing	calculator.	
	intercepts and end behavior, and		
	trigonometric functions, showing		
	period, midline, and amplitude,		
	and using phase shift.		
	Contant Consularity Lovel 2: Desig		
	Content Complexity: Level 2: Basic		
NA 50 042 5	Application of Skills & Concepts		
MAFS.912.F-	Write a function defined by an	Pages 31-33; Students will identify	MFAS:
<u>IF.3.8</u>	expression in different but equivalent	zeros, extreme values, and symmetry	Exponential
	forms to reveal and explain different	of a quadratic function written	Functions
	properties of the function. <i>a)</i> Use the process of factoring and	symbolically. Students will classify the	Losson
	<i>a)</i> Use the process of factoring and completing the square in a	exponential function as exponential growth or decay by examining the	Lesson: Forming
	quadratic function to show zeros,	base, and students will give the rate of	Quadratics
	extreme values, and symmetry of	growth or decay. Students will use the	
	the graph, and interpret these in	properties of exponents to interpret	
	terms of a context.	exponential expressions in a real-	
	b) Use the properties of exponents	world context. Students will write an	
	to interpret expressions for	exponential function defined by an	
	exponential functions. For	expression in different but equivalent	
	example, identify percent rate of	forms to reveal and explain different	
	change in functions such as $y =$	properties of the function, and	
	1.02^t , $y = 0.97^t$, $y =$	students will determine which form of	
	1.01^{12t} , $y = (0.97)^{t/10}$, and	the function is the most appropriate	
	classify them as representing	for interpretation for a real-world	
	exponential growth or decay.	context. For F-IF.3.8a, items that	
	experiencial growth of accuy.	require the student to transform a	
	Content Complexity: Level 2: Basic	quadratic equation to vertex form, b/a	
	Application of Skills & Concepts	must be an even integer. For F-IF.3.8b,	
		exponential functions are limited to	
		simple exponential growth and decay	
		functions and to exponential functions	
		with one translation. Base <i>e</i> should	
		not be used. Items may specify a	
		required form using an equation or	
		using common terminology such as	
		standard form.	
		Item assessed with and/or without	
		calculator.	
MAFS.912.F-	Compare properties of two functions	Pages 28-29; Students will	MFAS:
IF.2.6	each represented in a different way	differentiate between different types	Comparing
	(algebraically, graphically,	of functions using a variety of	Quadratics
	numerically in tables, or by verbal	descriptors (e.g., graphically, verbally,	
			•

descriptions). For example, given a	numerically, and algebraically).	Problem-
graph of one quadratic function and	Students will compare and contrast	Solving Task:
an algebraic expression for another,	properties of two functions using a	Throwing
say which has the larger maximum.	variety of function representations	Baseballs
	(e.g., algebraic, graphic, numeric in	
Content Complexity: Level 2: Basic	tables, or verbal descriptions).	
Application of Skills & Concepts		
	Item assessed with and/or without	
	calculator.	

Domain: Functions-Linear, Quadratic, & Exponential Models

Cluster 1 (Supporting): <u>Construct and compare linear, quadratic, and exponential models and solve problems.</u>

Standard Code	Standard	Clarification(s) & Assessment Limit(s)	Resources
MAFS.912.F-	Distinguish between situations that	Page 34; Students will determine	MFAS: How
<u>LE.1.1</u>	can be modeled with linear functions	whether the real-world context may	Does Your
	and with exponential functions. \star	be represented by a linear function or	Garden Grow?
	<i>a)</i> Prove that linear functions grow	an exponential function and give the	
	by equal differences over equal	constant rate or the rate of growth or	<u>Lesson</u> :
	intervals, and that exponential	decay. Students will choose an	<u>Appreciation</u>
	functions grow by equal factors	explanation as to why a context may	for Car
	over equal intervals.	be modeled by a linear function or an	<u>Depreciation</u>
	<i>b)</i> Recognize situations in which one	exponential function. Students will	
	quantity changes at a constant	interpret the rate of change and	
	rate per unit interval relative to	intercepts of a linear function when	
	another.	given an equation that models a real-	
	c) Recognize situations in which a	world context. Exponential functions	
	quantity grows or decays by a	should be in the form $a(b)^{x} + k$.	
	constant percent rate per unit	Item concord with and /or with ant	
	interval relative to another.	Item assessed with and/or without calculator.	
	Contant Consularity Louis 2		
	Content Complexity: Level 3:		
	Strategic Thinking & Complex		
MAFS.912.F-	Reasoning Construct linear and exponential	Pages 35-36; Students will write a	MFAS: What is
<u>LE.1.2</u>	functions, including arithmetic and	linear function, an arithmetic	the Function
<u>LC.1.2</u>	geometric sequences, given a graph,	sequence, an exponential function, or	Rule?
	a description of a relationship, or two	a geometric sequence when given a	<u>iture:</u>
	input-output pairs (include reading	graph that models a real-world	Original
	these from a table). \star	context. Students will write a linear	Tutorial:
		function, an arithmetic sequence, an	Creating
		exponential function, or a geometric	Exponential
	<u>Content Complexity</u> : Level 2: Basic	sequence when given a verbal	Functions
	Application of Skills & Concepts	description of a real-world context.	
		Students will write a linear function,	
		an arithmetic sequence, an	
		exponential function, or a geometric	
		sequence when given a table of values	
		or a set of ordered pairs that model a	

		real-world context. In items where the	
		student must write a function using	
		arithmetic operations or by composing	
		functions, the student should have to	
		generate the new function only.	
		In items where the student constructs	
		an exponential function, a geometric	
		sequence, or a recursive definition	
		from input-output pairs, at least two	
		sets of pairs must have consecutive	
		inputs. In items that require the	
		student to construct arithmetic or	
		geometric sequences, the real-world	
		context should be discrete. In items	
		that require the student to construct a	
		linear or exponential function, the	
		real-world context should be	
		continuous.	
		Itom accord with and for without	
		Item assessed with and/or without calculator.	
MAFS.912.F-	Observe using graphs and tables that	Page 37; Students will compare a	MFAS:
LE.1.3	a quantity increasing exponentially	linear function and an exponential	Compare
<u>LL.1.5</u>	eventually exceeds a quantity	function given in real-world context by	Linear and
	increasing linearly, quadratically, or	interpreting the functions' graphs.	Exponential
	(more generally) as a polynomial	Students will compare a linear	Functions
	function. ★	function and an exponential function	<u>- anotions</u>
		given in a real-world context through	Problem-
	<u>Content Complexity</u> : Level 2: Basic	tables. Students will compare a	Solving Task:
	Application of Skills & Concepts	quadratic function and an exponential	Exponential
		function given in real-world context by	growth versus
		interpreting the functions' graphs.	linear growth
		Students will compare a quadratic	
		function and an exponential function	
		given in a real-world context through	
		tables.	
		Item assessed with and/or without	
		calculator.	

Cluster 2 (Supporting): <u>Interpret expressions for functions in terms of the situation they model.</u>

Standard Code	Standard	Clarification(s) & Assessment Limit(s)	Resources
MAFS.912.F-	Interpret the parameters in a linear	Page 34; Students will interpret the	MFAS:
LE.2.5	or exponential function in terms of a	rate of change and intercepts of a	<u>Computer</u>
	context. 📩	linear function when given an	Repair
		equation that models a real-world	
	Content Complexity: Level 2: Basic	context. Students will interpret the x-	
	Application of Skills & Concepts	intercept, y-intercept, and/or rate of	

growth or decay of an exponential function given in a real-world context.
Item assessed with and/or without calculator.

Domain: Statistics & Probability-Interpreting Categorical & Quantitative Data

Cluster 1 (Additional): <u>Summarize, represent, and interpret data on a single count or measurement variable.</u>

Standard Code	Standard	Clarification(s) & Assessment Limit(s)	Resources
MAFS.912.S- ID.1.1	Represent data with plots on the real number line (dot plots, histograms, and box plots). ★	Page 39; Students will represent data using a dot plot, a histogram, or a box plot.	MFAS: <u>Trees</u> in the Park
	<u>Content Complexity</u> : Level 2: Basic Application of Skills & Concepts	Item assessed with and/or without calculator.	Lesson: Advantages and Disadvantages of Dot Plots, Histograms, and Box Plots
MAFS.912.S- ID.1.2	Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets. ★ <u>Content Complexity</u> : Level 2: Basic Application of Skills & Concepts	Page 40; Students will identify similarities and differences in shape, center, and spread when given two or more data sets. Students will predict the effect that an outlier will have on the shape, center, and spread of a data set. Items may require the student to calculate mean, median, and interquartile range for the purpose of identifying similarities and differences. Items should not require the student to calculate the standard deviation.	MFAS: Texting During Lunch Lesson: The Debate: Who is a Better Baller?
<u>MAFS.912.S-</u> <u>ID.1.3</u>	Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers). ★ <u>Content Complexity</u> : Level 2: Basic Application of Skills & Concepts	calculator. Page 40; Students will interpret similarities and differences in shape, center, and spread when given two or more data sets within the real-world context given. Items should not require the student to fit normal curves to data. Data distributions should be approximately normal. Data sets should be real-world and quantitative. Item assessed with and/or without calculator.	MFAS: Total Points Scored Lesson: Bowling for Box Plots

Standard	Clarification(s) & Assessment Limit(s)	Resources
ategorical data for two	Page 41; Students will create or	MFAS:
two-way frequency oret relative frequencies at of the data (including al, and conditional uencies). Recognize ociations and trends in <u>uplexity</u> : Level 2: Basic of Skills & Concepts	complete a two-way frequency table to summarize categorical data. Students will determine if associations/trends are appropriate for the data. Students will interpret data displayed in a two-way frequency table. Students will calculate joint, marginal, and conditional relative frequencies. In data with only two categorical variables, items should require the student to determine relative frequencies and use the frequencies to complete the table or to answer questions.	Breakfast Drink Preference Original Tutorial: Data and Frequencies
ata on two quantitative a scatter plot, and y the variables are ction to the data; use s fitted to data to solve s in the context of the e given functions or function suggested by ext. Emphasize linear, onential models. ly assess the fit of a by plotting and g residuals. ar function for a scatter suggests a linear on.	Item assessed with and/or without calculator. Pages 42-43; Students will represent data on a scatter plot. Students will identify a linear function, a quadratic function, or an exponential function that was found using regression. Students will use a regression equation to solve problems in the context of the data. Students will calculate residuals. Students will create a residual plot and determine whether a function is an appropriate fit for the data. Item assessed with and/or without calculator.	MFAS: Residuals Lesson: Calculating Residuals and Constructing a Residual Plot with Soccer Seats
	by plotting and residuals. r function for a scatter suggests a linear n.	by plotting and residuals. Item assessed with and/or without calculator. n. <u>blexity</u> : Level 2: Basic

Cluster 2 (Supporting): <u>Summarize, represent, and interpret data on two categorical and quantitative variables.</u>

Cluster 3 (Major).	: Interpret linear models.
--------------------	----------------------------

Standard Code	Standard	Clarification(s) & Assessment Limit(s)	Resources
MAFS.912.S-	Interpret the slope (rate of change)	Page 30; Students will interpret the y-	MFAS:
<u>ID.3.7</u>	and the intercept (constant term) of	intercept of a linear model that	Intercept for
		represents a set of data with a real-	<u>Life</u>

			11
	a linear model in the context of the	world context. Items should include	Expectancy
	data. ★	data sets. Data sets must contain at	
		least six data pairs. The linear function	Lesson: Slope
	Content Complexity: Level 2: Basic	given in the item should be the	and y-
	Application of Skills & Concepts	regression equation. The rate of	intercept of a
		change and the y-intercept should	Statistical
		have a value with at least a	Model
		hundredths place value.	
		Item assessed with and/or without	
		calculator.	
MAFS.912.S-	Compute (using technology) and	Pages 42-43; Students will determine	MFAS:
ID.3.8	interpret the correlation coefficient	the fit of a function by analyzing the	Correlation
	of a linear fit. ★	correlation coefficient. In items that	Order
		require the student to interpret or use	
	Contant Complexity Level 2. Pasia	the correlation coefficient, the value	Lesson:
	Content Complexity: Level 2: Basic	of the correlation coefficient must be	Scrambled
	Application of Skills & Concepts	given in the stem.	Coefficient
		Item assessed with and/or without	
		calculator.	
MAFS.912.S-	Distinguish between correlation and	Pages 42-43; Students will distinguish	MFAS: Does
ID.3.9	causation. 📩	between situations where correlation	Studying Pay?
		does not imply causation.	
		Students will distinguish variables that	Lesson:
	Content Complexity: Level 2: Basic	are correlated because one is the	Correlation or
	Application of Skills & Concepts	cause of another.	Causation:
			That is the
		Item assessed with and/or without	question
		calculator.	4405000
			I

Algebra 1 Resources

Course Descriptions, Standards, and Resources

- <u>Algebra 1 Course Description</u>
- <u>Algebra 1 Honors Course Description</u>
- Algebra 1 Student Resources
- <u>Text Complexity Resources</u>
- Florida Assessments for Instruction in Mathematics (FAIM)
- <u>Student Support Resources</u>
- Parent Support Resources

Florida Standards Assessment Assistance

- <u>Test Item Specifications</u>
- <u>Test Design Summary and Blueprint</u>
- FSA Fact Sheet
- <u>Calculator and Reference Sheet Policy</u>
- <u>Reference Sheet</u>